Mathematical Notes

, Volume 105, Issue 3–4, pp 469–472 | Cite as

On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors (2, 3, 4) and (2, 3, 5)

  • M. V. KuznetsovEmail author
Short Communication


nilpotent Lie group sub-Laplacian noncommutative harmonic analysis special functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Boscain, J.-P. Gauthier, and F. Rossi, Hypoelliptic Heat Kernel over 3-Step Nilpotent Lie Groups, arXiv: 1002.0688v1 (2010).Google Scholar
  2. 2.
    Y. S. Choun, Asymptotic Behavior of Heun Function and Its Integral Formalism, arXiv: 1303.0876v9 (2013).Google Scholar
  3. 3.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1: Distribution Theory and Fourier Analysis (Springer, Heidelberg, 1983; Mir, Moscow, 1986).zbMATHGoogle Scholar
  4. 4.
    A. A. Agrachev and Yu. L. Sachkov, Geometric Theory of Control (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  5. 5.
    G. Ben Arous, Ann. Inst. Fourier (Grenoble) 39 (1), 73 (1989).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations