Advertisement

Mathematical Notes

, Volume 105, Issue 3–4, pp 425–428 | Cite as

On Groups with an Isolated 2-Subgroup

  • A. I. SozutovEmail author
  • B. E. DurakovEmail author
Article
  • 16 Downloads

Abstract

In the paper, sufficient conditions for a group with an isolated 2-subgroup to be a Frobenius group are found.

Keywords

isolated subgroup 2-subgroup Frobenius group finite involution perfect involution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Kurosh, The Theory of Groups (Nauka, Moscow, 1967; 2nd English transl., 2 volumes, Chelsea Publishing Co., New York, 1960).zbMATHGoogle Scholar
  2. 2.
    A. I. Starostin, “On Frobenius groups,” Ukrain. Mat. Zh. 23 (5), 629–639 (1971) [in Russian].MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. I. Sozutov and V. P. Shunkov, “On a generalization of Frobenius’ theorem to infinite groups,” Mat. Sb. 100 (142) (4(8)), 495–506 (1976) [Math. USSR-Sb. 29 (4), 441–451 (1976)].MathSciNetzbMATHGoogle Scholar
  4. 4.
    V. P. Shunkov, “A certain generalization of Freobenius’ theorem to periodic groups,” Algebra Logika 6 (3), 113–124 (1967) [in Russian].MathSciNetGoogle Scholar
  5. 5.
    V. P. Shunkov, “Periodic groups with an almost regular involution,” Algebra Logika 11 (4), 470–493 (1972) [in Russian].MathSciNetGoogle Scholar
  6. 6.
    V. V. Belyaev, “Groups with almost regular involution,” Algebra Logika 26 (5), 531–535 (1987) [in Russian].MathSciNetzbMATHGoogle Scholar
  7. 7.
    V. P. Shunkov, “Groups with finitely imbedded involution,” Algebra Logika 29 (1), 102–123 (1990) [Algebra Logic 29 (1), 75–91 (1990)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. I. Sozutov, “Groups with an almost regular involution,” Algebra Logika 46 (3), 360–368 (2007) [Algebra Logic 46 (3), 195–199 (2007)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    N. M. Suchkov, “Finiteness of Some Sharply Doubly Transitive Groups,” Algebra Logika 40 (3), 344–351 (2001) [Algebra Logic, 40 (3), 190–193 (2001)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. I. Sozutov, “Groups with the quasicyclic centralizer of a finite involution,” Sibirsk. Mat. Zh. 57 (5), 1127–1130 (2016) [Sib. Math. J. 57 (5), 881–883 (2016)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    The Kourovka Notebook. Unsolved Problems in Group Theory, 15th augmented ed. (Rossiiskaya Akademiya Nauk Sibirskoe Otdelenie, Institut Matematiki im. S. L. Soboleva, Novosibirsk, 2002).Google Scholar
  12. 12.
    Yu. M. Gorchakov, “On infinite Frobenius groups,” Algebra Logika 4 (1), 15–29 (1965) [in Russian].MathSciNetGoogle Scholar
  13. 13.
    A. I. Sozutov, N. M. Suchkov, and N. G. Suchkova, Infinite Groups with Involutions (Siberian Fed. Univ., Krasnoyarsk, 2011) [in Russian].Google Scholar
  14. 14.
    A. I. Sozutov, “On some infinite groups with a strongly embedded subgroup,” Algebra Logika 39 (5), 602–617 (2000) [Algebra Logic, 39 (5), 345–353 (2000)].MathSciNetGoogle Scholar
  15. 15.
    N. Ito, “Über das Product von zwei abelschen Gruppen,” Math. Z. 62 (4), 400–401 (1955).MathSciNetzbMATHGoogle Scholar
  16. 16.
    B. Amberg and Y. Sysak, On Products of Groups with Abelian Subgroups of Small Index, arXiv: math.GR/1611.10093v1 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations