Advertisement

Mathematical Notes

, Volume 105, Issue 3–4, pp 359–365 | Cite as

Convergence Exponent of a Special Integral in the Two-Dimensional Tarry Problem with Homogeneous Polynomial of Degree 2

  • I. Sh. JabbarovEmail author
Article
  • 13 Downloads

Abstract

The exact value of the convergence exponent of the special integral in the two-dimensional Tarry problem with a homogeneous polynomial of second degree in the exponent of the imaginary exponential is obtained. The result is based on a representation of the trigonometric integral as a Fourier transform.

Keywords

Tarry problem special integral convergence exponent Fourier transform Plancherel’s theorem Hausdorff-Young inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory (Nauka, Moscow, 1971) [in Russian].zbMATHGoogle Scholar
  2. 2.
    I. M. Vinogradov and A. A. Karatsuba, “The method of trigonometric sums in number theory,” in Trudy Mat. Inst. Steklova, Vol. 168: Algebra, Mathematical Logic, Number Theory, Topology (1984), pp. 4–30 [Proc. SteklovInst. Math. 168, 3–30 (1986)].Google Scholar
  3. 3.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Trigonometric integrals,” Izv. Akad. Nauk SSSR Ser. Mat. 43 (5), 971–1003 (1979) [Math. USSR-Izv. 15 (2), 211–239 (1980)].MathSciNetzbMATHGoogle Scholar
  4. 4.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Multiple trigonometric sums and their applications,” Izv. Akad. Nauk SSSR Ser. Mat. 44 (4), 723–781 (1980) [Math. USSR-Izv. 17 (1), 1–54 (1981)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. N. Chubarikov, “On a multiple trigonometric integral,” Dokl. Dokl. Akad. Nauk SSSR 227 (6), 1308–1310 (1976) [Soviet Math. Dokl. 17, 618–620 (1976)].MathSciNetGoogle Scholar
  6. 6.
    V. N. Chubarikov, “Multiple rational trigonometric sums and multiple integrals,” Mat. Zametki 20 (1), 61–68 (1976) [Math. Notes 20 (1), 589–593 (1976)].MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hua Loo Keng, “On the number of solutions of Tarry’s problem,” Acta Sci. Sinica 1 (1), 1–76 (1952).MathSciNetGoogle Scholar
  8. 8.
    G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Multiple trigonometric sums,” in Trudy Mat. Inst. Steklova (MIAN, Moscow, 1980), Vol. 151, pp. 3–128 [Proc. Steklov Inst. Math. 151 (2), 1–126 (1982)].Google Scholar
  9. 9.
    G. I. Arkhipov, A. A. Karatsuba and V. N. Chubarikov, Theory of Multiple Trigonometric Sums (Nauka, Moscow, 1987) [in Russian].zbMATHGoogle Scholar
  10. 10.
    I. Sh. Jabbarov [Dzhabbarov], “On an identity in harmonic analysis and its applications,” Dokl. Akad. Nauk SSSR 314 (5), 1052–1054 (1990) [Soviet Math. Dokl. 42 (2), 577—579 (1991)].Google Scholar
  11. 11.
    I. Sh. Jabbarov [Dzhabbarov], “On estimates of trigonometric integrals,” in Trudy Mat. Inst. Steklova, Vol. 207: Number Theory and Analysis (Nauka, Moscow, 1994), pp. 82–92 [Proc. Steklov Inst. Math. 207, 77–85 (1995)].Google Scholar
  12. 12.
    I. Sh. Jabbarov [Dzhabbarov], “On estimates for trigonometric integrals,” Chebyshevskii Sb. 11 (1), 85–108 (2010).MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. N. Chubarikov, “Multiple trigonometric sums,” Chebyshevskii Sb. 12 (4), 134–173 (2011).MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. N. Chubarikov, “Multidimensional problems in prime number theory,” Chebyshevskii Sb. 12 (4), 174–263 (2011).MathSciNetzbMATHGoogle Scholar
  15. 15.
    I. Sh. Jabbarov [Dzhabbarov], “On the convergence exponent of the special integral in the two-dimensional Tarry problem,” Uchen. Zap. Orlovsk. Univ. 6, 80–89 (2012).Google Scholar
  16. 16.
    I. Sh. Jabbarov [Dzhabbarov], “On the convergence exponent of the special integral in the multidimensional Tarry problem,” Chebyshevskii Sb. 14 (2), 74–103 (2013).Google Scholar
  17. 17.
    I. A. Ikromov, “On the convergence exponent of trigonometric integrals,” in Trudy Mat. Inst. Steklova, Vol. 218: Analytic Number Theory and Applications (Nauka, Moscow, 1997), pp. 179–189 [Proc. Steklov Inst. Math. 218, 175–185 (1997)].Google Scholar
  18. 18.
    M. A. Chakhkiev, “On the convergence exponent of the singular integral in the multi-dimensional analogue of Tarry’s problem,” Izv. Ross. Akad. Nauk Ser. Mat. 67 (2), 211–224 (2003) [Izv. Math. 67 (2), 405–418 (2003)].MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Zygmund, Trigonometric Series (Cambridge Univ. Press, Cambridge, 1960; Mir, Moscow, 1965), Vols. 2.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ganja State UniversityGanjaAzerbaijan

Personalised recommendations