Advertisement

Mathematical Notes

, Volume 105, Issue 3–4, pp 351–358 | Cite as

An Internal Polya Inequality for ℂ-Convex Domains in ℂn

  • O. GünyüzEmail author
  • V. ZakharyutaEmail author
Article
  • 18 Downloads

Abstract

Let K ⊂ ℂ be a polynomially convex compact set, f be a function analytic in a domain \(\overline{\mathbb{C}} \backslash K\) with Taylor expansion \(f(z) = \sum\nolimits_{k = 0}^\infty {{a_k}/{z^{k + 1}}} \) at ∞, and \({H_i}(f): = {\rm{det}}({a_{k + l}})_{k,l = 0}^i\) be the related Hankel determinants. The classical Polya theorem [11] says that \(\mathop {{\rm{lim\; sup}}}\limits_{i \to \infty } \;{\rm{|}}{H_i}(f){{\rm{|}}^{1/{i^2}}} \le d(K),\) where d(K) is the transfinite diameter of K. The main result of this paper is a multivariate analog of the Polya inequality for a weighted Hankel-type determinant constructed from the Taylor series of a function analytic on a ℂ-convex (= strictly linearly convex) domain in ℂn.

Keywords

Polya inequality transfinite diameter ℂ-convexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Andersson, M. Passare, and R. Sigurdsson, Complex Convexity and Analytic Functionals. I, Science Institute, University of Iceland (1995), Report RH-06-95.zbMATHGoogle Scholar
  2. 2.
    S. Dineen, Complex Analysis in Locally Convex Spaces (North-Holland Publ., 1981).zbMATHGoogle Scholar
  3. 3.
    M. Fekete, “Über die Verteilung der Wurzen bei gewissener algebraischen Gleichungen mit ganzzahligen Koefficienten,” Math. Z. 17, 228–249 (1923).MathSciNetGoogle Scholar
  4. 4.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, in Transl. Math. Monogr. (Amer. Math. Soc., RI, 1969), Vol. 26.zbMATHGoogle Scholar
  5. 5.
    L. Hörmander, An Introduction to Complex Analysis in Several Variables (North Holland and American Elsevier, Amsterdam, 1990).zbMATHGoogle Scholar
  6. 6.
    M. Jedrzejowski, “The Homogeneous Transfinite Diameter of a Compact Set in ℂn,” Annales Polonici Mathematici 55, 191–205 (1991).MathSciNetzbMATHGoogle Scholar
  7. 7.
    C. O. Kiselman, “Weak Lineal Convexity,” Banach Center Publications 107, 159–174 (2016).MathSciNetzbMATHGoogle Scholar
  8. 8.
    F. Leja, “Problémes à résondre posés à la conférence,” Colloq. Math. 7, 151–153 (1959).Google Scholar
  9. 9.
    N. Levenberg, Capacities in Several Complex Variables, Doctoral Dissertation (University of Michigan, Michigan, 1984).Google Scholar
  10. 10.
    A. Martineau, “Sur la notion d’ensemble fortement lineelement convexe,” Anais Acado Brasill. Cienc. 4 (4), 427–435 (1968).zbMATHGoogle Scholar
  11. 11.
    G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III,” Sitzber. Preuss. Akad. Wiss., Phys.-Math., 55–62 (1929).Google Scholar
  12. 12.
    M. Schiffer and J. Siciak, “Transfinite diameter and analytic continuation of functions of two complex variable,” in Studies in Math. Analysis and Related Topics (Stanford, 1962), pp. 341–358.Google Scholar
  13. 13.
    V. P. Sheinov, “Transfinite diameter and some theorems of Polya in the case of several complex variables,” Sib. Mat. Zh. 6, 999–1004 (1971).Google Scholar
  14. 14.
    V. P. Sheinov, “Invariant form of Polya’s inequalities,” Sib. Math. J. 14, 194–203 (1973).MathSciNetGoogle Scholar
  15. 15.
    V. Zakharyuta, “Transfinite diameter, Chebyshev constants, and capacities in ℂn,” Math. USSR Sbornik 25, 350–364 (1975).Google Scholar
  16. 16.
    V. Zakharyuta, “Internal characteristics of domains in ℂn,” Annales Polonici Mathematici 111 (3), 215–236 (2014).MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. V. Znamenskii, “Strong linear convexity. I. Duality of spaces of holomorphic functions,” Sib. Math. J. 26, 331–341 (1985).MathSciNetGoogle Scholar
  18. 18.
    V. A. Znamenskii, “The stability of the transfinite diameter for a compact set in Cℂn,” Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Ser. Estestv. 4, 14–16 (1978).MathSciNetGoogle Scholar
  19. 19.
    V. A. Znamenskii, “Chebyshev constant for a compact set in ℂn,” Turkish J. Math. 18 (3), 229–237 (1994).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sabancı UniversityTuzla/IstanbulTurkey

Personalised recommendations