Advertisement

Mathematical Notes

, Volume 105, Issue 3–4, pp 342–350 | Cite as

The Bombieri Problem for Bounded Univalent Functions

  • V. G. GordienkoEmail author
  • D. V. ProkhorovEmail author
Article
  • 12 Downloads

Abstract

Bombieri proposed to describe the structure of the sets of values of the initial coefficients of normalized conformal mappings of the disk in a neighborhood of the corner point corresponding to the Koebe function. The Bombieri numbers characterize the limit position of the support hyperplane passing through a critical corner point. In this paper, the Bombieri problem is studied for the class of bounded normalized conformal mappings of the disk, where the role of the Koebe function is played by the Pick function. The Bombieri numbers for a pair of two nontrivial initial coefficients are calculated.

Keywords

univalent function Bombieri number Koebe function Pick function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bombieri, “On the local maximum property of the Koebe function,” Invent. Math. 4, 26–67 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. Bshouty and W. Hengartner, “Local behavior of coefficients in subclasses of S,” in Topics in Complex Analysis, Contemp. Math. (Amer. Math. Soc., Providence, RI, 1985), Vol. 38, pp. 77–84.CrossRefGoogle Scholar
  3. 3.
    D. Bshouty and W. Hengartner, “A variation of the Koebe mapping in a dense subset of S,” Canad. J. Math. 39 (1), 54–73 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Greiner and O. Roth, “On support points of univalent functions and a disproof a conjecture of Bombieri,” Proc. Amer. Math. Soc. 129 (12), 3657–3664 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D. Aharonov and D. Bshouty, “A problem of Bombieri on univalent functions,” Comput. Methods Funct. Theory 16 (4), 677–688 (2016).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    I. Efraimidis, “On the failure of Bombieri’s conjecture for univalent functions,” Comput. Methods Funct. Theory 18 (3), 427–438 (2018), http://arxiv.org/abs/math/1612.07242v2.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Yuk-Y. Leung, “On the Bombieri numbers for the class S,” J. Anal. 24 (2), 229–250 (2016).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    L. de Branges, “A proof of the Bieberbach conjecture,” Acta Math. 154 (1–2), 137–152 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions (Amer. Math. Soc., Providence, RI, 1950).zbMATHGoogle Scholar
  10. 10.
    A. C. Schaeffer and D. C. Spencer, “The coefficients of schlicht functions. II,” Duke Math. J. 12, 107–125 (1945).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations