Advertisement

Mathematical Notes

, Volume 105, Issue 3–4, pp 329–341 | Cite as

Refinement of Lower Bounds of the Chromatic Number of a Space with Forbidden One-Color Triangles

  • A. V. BobuEmail author
  • A. É. KupriyanovEmail author
Article
  • 11 Downloads

Abstract

The present paper deals with estimates of the chromatic number of a space with forbidden one-color triangles. New lower bounds for the quantity under study, which are sharper than all bounds obtained so far, are presented.

Keywords

Nelson-Erdős-Hadwiger problem chromatic number of a space with forbidden one-color triangles linear-algebraic method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hadwiger, “Ein Überdeckungssatz für den Euklidischen Raum,” Portugaliae Math. 4, 140–144 (1944).MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Soifer, Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of Its Creators (Springer, New York, 2009).zbMATHGoogle Scholar
  3. 3.
    P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry (Springer, New York, 2006).zbMATHGoogle Scholar
  4. 4.
    A. M. Raigorodskii, “Borsuk’s problem and the chromatic numbers of some metric spaces,” Uspekhi Mat. Nauk 56 (1 (337)), 107–146 (2001) [Russian Math. Surveys Uspekhi Mat. Nauk 56 (1), 103–139 (2001)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    D. G. Larman and C. A. Rogers, “The realization distances within sets in Euclidean space,” Mathematika 19, 1–24 (1972).MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. I. Prosanov, A. M. Raigorodskii, and A. A. Sagdeev, “Refinement of Frankl–Rödl theorem and geometric consequences,” Dokl. Akad. Nauk 475 (2), 137–139 (2017).zbMATHGoogle Scholar
  7. 7.
    P. Frankl and R. Wilson, “Intersection theorems with geometric consequences,” Combinatorica 1 (4), 357–368 (1981).MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. M. Raigorodskii, “On the chromatic number of a space,” Uspekhi Mat. Nauk 55 (2 (332)), 147–148 (2000) [Russian Math. Surveys 55 (2), 351–352 (2000)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    L. A. Székely, “Erdős on the unit distances and the Szemerédi–Trotter theorems,” in Paul Erdős and His Mathematics, Bolyai Soc. Math. Stud. (János Bolyai Math. Soc., Budapest, 2002), Vol. 11, pp. 649–666.Google Scholar
  10. 10.
    A. M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters,” in Thirty Essays on Geometric Graph Theory (Springer, New York, 2013), pp. 429–460.Google Scholar
  11. 11.
    A. M. Raigorodskii, “Combinatorial geometry and coding theory,” Fund. Inform. 145 (3), 359–369 (2016).MathSciNetzbMATHGoogle Scholar
  12. 12.
    P. Frankl and A. Kupavskii, “Erdős–Ko–Rado theorem for {0, ±1}-vectors,” J. Combin. Theory Ser. A 155, 157–179 (2018).MathSciNetzbMATHGoogle Scholar
  13. 13.
    P. Frankl and A. Kupavskii, “Intersection theorems for {0, ±1}-vectors and s-cross-intersecting families,” Mosc. J. Comb. Number Theory 7 (2), 91–109 (2017).MathSciNetzbMATHGoogle Scholar
  14. 14.
    P. Frankl and A. Kupavskii, “Asize-sensitive inequality for cross-intersecting families,” European J. Combin. 62, 263–271 (2017).MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. Ya. Kanel’-Belov, V. A. Voronov, and D. D. Cherkashin, “On the chromatic number of infinitesimal plane layer,” Algebra Anal. 29 (5), 68–89 (2017) [St. Petersburg Math. J. 29 (5), 761–775 (2018)].zbMATHGoogle Scholar
  16. 16.
    D. D. Cherkashin and A. M. Raigorodskii, “On the chromatic numbers of spaces of small dimension,” Dokl. Akad. Nauk 472 (1), 11–12 (2017) [Dokl. Math. 95 (1), 5–6 (2017)].MathSciNetGoogle Scholar
  17. 17.
    L. É. Shabanov and A. M. Raigorodskii, “Turán bounds for distance graphs,” for the distance graphs,” Dokl. Akad. Nauk 475 (3), 254–257 (2017) [Dokl. Math. 96 (1), 351–353 (2017)].zbMATHGoogle Scholar
  18. 18.
    M. Benda and M. Perles, “Colorings of metric spaces,” Geombinatorics 9 (3), 113–126 (2000).MathSciNetzbMATHGoogle Scholar
  19. 19.
    Z. Füredi and J.-H. Kang, “Distance graphs on ℤn with l 1-norm,” Theoret. Comput. Sci. 319 (1–3), 357–366 (2004).MathSciNetGoogle Scholar
  20. 20.
    A. Kupavskiy, “On the chromatic number of ℝn with an arbitrary norm,” Discrete Math. 311 (6), 437–440 (2011).MathSciNetzbMATHGoogle Scholar
  21. 21.
    E. I. Ponomarenko and A. M. Raigorodskii, “A new lower bound for the chromatic number of the rational space,” Uspekhi Mat. Nauk 68 (5 (413)), 183–184 (2013) [Russian Math. Surveys 68 (5), 960–962 (2013)].MathSciNetzbMATHGoogle Scholar
  22. 22.
    E. I. Ponomarenko and A. M. Raigorodskii, “New lower bound for the chromatic number of a rational space with one and two forbidden distances,” Mat. Zametki 97 (2), 25–261 (2015) [Math. Notes 97 (2), 249–254 (2015)].MathSciNetzbMATHGoogle Scholar
  23. 23.
    E. I. Ponomarenko and A. M. Raigorodskii, “On the chromatic number of the space ℚn,” Trudy MFTI 4 (1), 127–130 (2012).Google Scholar
  24. 24.
    L. Lovász, “Self-dual polytopes and the chromatic number of distance graphs on the sphere,” Acta Sci. Math. (Szeged) 45 (1–4), 317–323 (1983).MathSciNetzbMATHGoogle Scholar
  25. 25.
    A. M. Raigorodskii, “On the chromatic numbers of spheres in ℝn,” Combinatorica 32 (1), 111–123 (2012).MathSciNetzbMATHGoogle Scholar
  26. 26.
    A. B. Kupavskii, “On the coloring of spheres embedded in ℝn,” Mat. Sb. 202 (6), 83–110 (2011) [Sb. Math. 202 (6), 859–886 (2011)].MathSciNetGoogle Scholar
  27. 27.
    O. A. Kostina and A. M. Raigorodskii, “On lower bounds for the chromatic number of a sphere,” Dokl. Ross. Akad. Nauk 463 (6), 639 (2015).MathSciNetzbMATHGoogle Scholar
  28. 28.
    O. A. Kostina and A. M. Raigorodskii, “On the new lower bounds for the chromatic number of a sphere,” Trudy MFTI 7 (2), 20–26 (2015).zbMATHGoogle Scholar
  29. 29.
    A. V. Berdnikov and A. M. Raigorodskii, “On the chromatic number of Euclidean space with two forbidden distances,” Mat. Zametki 96 (5), 790–793 (2014) [Math. Notes 96 (5), 827–830 (2014)].MathSciNetzbMATHGoogle Scholar
  30. 30.
    A. V. Berdnikov, “Estimate for the chromatic number of Euclidean space with several forbidden distances,” Mat. Zametki 99 (5), 783–787 (2016) [Math. Notes 99 (5), 774–778 (2016)].MathSciNetzbMATHGoogle Scholar
  31. 31.
    A. V. Berdnikov, “Chromatic number with several forbidden distances in the space with the l q-metric,” J. Math. Sci. (N. Y.) 227 (4), 395–401 (2017).MathSciNetzbMATHGoogle Scholar
  32. 32.
    D. V. Samirov and A. M. Raigorodskii, “Cascade search for preimages and coincidences: Global and local versions,” Mat. Zametki 93 (1), 127–143 (2013) [Math. Notes 93 (1), 172–186 (2013)].MathSciNetGoogle Scholar
  33. 33.
    D. V. Samirov and A. M. Raigorodskii, “New lower bounds for the chromatic number of a space with forbidden isosceles triangles,” in Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat.Obz., Vol. 125: Dynamical Systems (VINITI, Moscow, 2013), pp. 252–268 [J. Math. Sci. (N. Y.) 204 (4), 531–541 (2015)].Google Scholar
  34. 34.
    D. V. Samirov and A. M. Raigorodskii, “New bounds for the chromatic number of a space with forbidden isosceles triangles,” Dokl. Ross. Akad. Nauk 456 (3), 280–283 (2014).zbMATHGoogle Scholar
  35. 35.
    D. V. Samirov and A. M. Raigorodskii, “On a one problem related to the optimal coloring of a space without one-color isosceles triangles,” Trudy MFTI 7 (2), 39–50 (2015).Google Scholar
  36. 36.
    A. V. Bobu, A. É. Kupriyanov, and A. M. Raigorodskii, “On the number of edges of a uniform hypergraph with a range of allowed intersections,” Probl. Peredachi Inf. 53 (4), 16–42 (2017) [Probl. Inf. Transmission 53 (4), 319–342 (2017)].MathSciNetzbMATHGoogle Scholar
  37. 37.
    A. M. Raigorodskii and A. A. Kharlamova, “On collections of (−1,0,1)-vectors with constraints on the values of pairwise inner products,” in Studies in Vector and Tensor Analysis (Izd. Moskov. Univ., Moscow, 2013), Vol. 29, pp. 130–146 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations