Skip to main content
Log in

Influence of Nonlinear Interaction on the Evolution of Waves in a Shallow Basin

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The influence of nonlinear interaction of oppositely directed nonlinear waves in a shallow basin is studied theoretically and numerically within the nonlinear theory of shallow water. It is shown that this interaction leads to a change in the phase of propagation of the main wave, which is forced to propagate along the flow induced by the oncoming wave. The estimates of the undisturbed wave height at the time of interaction agree with the theoretical predictions. The phase shift during the interaction of undisturbed waves is sufficiently small, but becomes noticeable in the case of the propagation of breaking waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Stoker, Water Waves (Wiley-Interscience, New York, 1957; Moscow, Izdatel’stvo inostrannoi literatury, 1959).

  2. N. E. Vol’tsinger, K. A. Klevannyi, and E. N. Pelinovsky, Longwave Dynamics of Coastal Zones (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  3. A. S. Arsen’ev and N. K. Shelkovnikov, Dynamics of Seawater Long Waves (MGU, Moscow, 1991) [in Russian].

    Google Scholar 

  4. C. O. Sozdinler, A. C. Yalciner, and A. Zaytsev, “Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts,” Pure Appl. Geophys. 172, 931–952 (2015).

    Article  Google Scholar 

  5. D. Velioglu, R. Kian, A. C. Yalciner, and A. Zaytsev, “Performance assessment of NAMI DANCE in tsunami evolution and currents using a benchmark problem,” J. Mar. Sci. Eng. 4 (3), 49 (2016).

    Article  Google Scholar 

  6. P. J. Lynett, K. Gately, R. Wilson, L. Montoya, D. Arcas, B. Aytore, Y. Bai, J. D. Bricker, M. J. Castro, K. F. Cheung, C. G. David, G. G. Doğan, C. Escalante, J. M. González-Vida, S. T. Grilli, T. W. Heitmann, J. J. Horrillo, U. Kânoglu, R. Kian, J. T. Kirby, W. Li, J. Macías, D. J. Nicolsky, S. Ortega, A. Pampell-Manis, Y. S. Park, V. Roeber, N. Sharghivand, M. Shelby, F. Shi, B. Tehranirad, E. Tolkova, H. K. Thio, D. Velioğlu, A. C. Yalçiner, Y. Yamazaki, A. Zaytsev, and Y. J. Zhang, “Inter-model analysis of tsunami-induced coastal currents,” Ocean Modell. 114, 14–32 (2017).

    Article  Google Scholar 

  7. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002).

    Book  Google Scholar 

  8. R. J. LeVeque, D. L. George, and M. J. Berger, “Tsunami modeling with adaptively refined finite volume methods,” Acta Numerica 20, 211–289 (2011).

    Article  Google Scholar 

  9. M. Berger, D. George, R. J. LeVeque, and K. T. Mandli, “The GeoClaw software for depth-averaged flows with adaptive refinement,” Adv. Water Resour. 34 (9), 1195–1206 (2011).

    Article  Google Scholar 

  10. F. I. Gonzalez, R. J. LeVeque, P. Chamberlain, Br. Hirai, J. Varkovitzky, and D. L. George, Validation of the GeoClaw Model (University of Washington, Washington, D.C., 2011).

    Google Scholar 

  11. E. N. Pelinovsky, Hydrodynamics of Tsunami Waves (IPF RAN, Nizhny Novgorod, 1996) [in Russian].

    Google Scholar 

  12. E. N. Pelinovsky, I. I. Didenkulova, A. A. Kurkin, and A. A. Rodin, Analytical Theory of Sea Wave Run-Up on the Shore (NGTU im. R. E. Alekseeva, Nizhny Novgorod, 2015) [in Russian].

  13. A. Raz, D. Nicolsky, A. Rybkin, and E. Pelinovsky, “Long wave run-up in asymmetric bays and in fjords with two separate heads,” J. Geophys. Res.: Oceans 123 (3), 2066–2080 (2018).

    Article  Google Scholar 

  14. E. N. Pelinovsky and A. A. Rodin, “Transformation of a strongly nonlinear wave in a shallow-water basin,” Izv., Atmos. Ocean. Phys. 48 (3), 343–349 (2012).

    Article  Google Scholar 

  15. E. Pelinovsky, C. Kharif, and T. Talipova, “Large-amplitude long wave interaction with a vertical wall,” Eur. J. Mech., Ser. B, 27 (4), 409– 418 (2008).

    Google Scholar 

  16. E. Pelinovsky, E. G. Shurgalina, and A. A. Rodin, “Criteria for the transition from a breaking bore to an undular bore,” Izv., Atmos. Ocean. Phys. 51 (5), 530–533 (2015).

    Article  Google Scholar 

  17. I. I. Didenkulova, N. Zaibo, A. A. Kurkin, and E. N. Pelinovsky, “Steepness and spectrum of a nonlinearly deformed wave on shallow waters,” Izv., Atmos. Ocean. Phys. 42 (6), 773–776 (2006).

    Article  Google Scholar 

  18. R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves (Wiley, London, 1948; Izdatel’stvo inostrannoi literatury, Moscow, 1950).

Download references

FUNDING

This research was performed within the Scientific State Task (theme nos. 5.4568.2017/6.7 and 5.5176.2017/8.9) and supported by grant from the President of the Russian Federation for Leading Scientific Schools of Russia SS-2685.2018.5, the “Nonlinear Dynamics” Program, and the Russian Foundation for Basic Research (grant nos. 17-05-00067 and 18-05-80019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Rodina, A. A. Kurkin or E. N. Pelinovsky.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodin, A.A., Rodina, N.A., Kurkin, A.A. et al. Influence of Nonlinear Interaction on the Evolution of Waves in a Shallow Basin. Izv. Atmos. Ocean. Phys. 55, 374–379 (2019). https://doi.org/10.1134/S0001433819040108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819040108

Keywords:

Navigation