Skip to main content
Log in

Vertical Propagation of Acoustic-Gravity Waves from Atmospheric Fronts into the Upper Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The empirical approximations of atmospheric pressure-field oscillations were constructed based on observational data on atmospheric pressure variations at the land surface, which were obtained at the network of four microbarographs located in the Moscow region during the passage of an atmospheric front. The approximating functions were used as a lower boundary condition to numerically calculate the propagation of acoustic-gravity waves into the upper atmosphere from their source in the lower troposphere. The amplitude of upper atmosphere temperature disturbances caused by acoustic-gravity waves from the atmospheric front was estimated at about 170 K, while the amplitude of upper atmosphere temperature disturbances caused by background pressure variations at the land surface was estimated at 4–5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Blanc, T. Farges, A. Le Pichon, and P. Heinrich, “Ten year observations of gravity waves from thunderstorms in Western Africa,” J. Geophys. Res.: Atmos. 119, 6409–6418 (2014).

    Google Scholar 

  2. A. D. Pierce and S. C. Coroniti, “A mechanism for the generation of acoustic-gravity waves during thunder-storm formation,” Nature 210, 1209–1210 (1966).

    Article  Google Scholar 

  3. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1003 (2003).

    Article  Google Scholar 

  4. D. C. Fritts, S. L. Vadas, K. Wan, et al., “Mean and variable forcing of the middle atmosphere by gravity waves,” J. Atmos. Sol.-Terr. Phys. 68, 247–265 (2006).

    Article  Google Scholar 

  5. R. Plougonven and Ch. Snyder, “Inertial gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles,” J. Atmos. Sci. 64, 2502–2520 (2007).

    Article  Google Scholar 

  6. R. Plougonven and F. Zhang, “Internal gravity waves from atmospheric jets and fronts,” Rev. Geophys. 52, 33–76 (2014).

    Article  Google Scholar 

  7. A. S. Medvedev and N. M. Gavrilov, “The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere,” J. Atmos. Terr. Phys. 57, 1221–1231 (1995).

    Article  Google Scholar 

  8. N. K. Balachandran, “Gravity waves from thunderstorms,” Mon. Weather Rev. 108, 804–816 (1980).

    Article  Google Scholar 

  9. M. Alexander, P. May, and J. Beres, “Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment,” J. Geophys. Res. 109, 1–11 (2004).

    Article  Google Scholar 

  10. D. V. Miller, “Thunderstorm induced gravity waves as a potential hazard to commercial aircraft,” in Proceedings of the 79th Annual Conference of the American Meteorological Society (Am. Meteorol. Soc., Dallas, Tex., 1999).

  11. R. Fovell, D. Durran, and J. R. Holton, “Numerical simulation of convectively generated stratospheric gravity waves,” J. Atmos. Sci. 49 (16), 1427–1442 (1992).

    Article  Google Scholar 

  12. Y. A. Kurdyaeva, S. P. Kshevetskii, N. M. Gavrilov, et al., “Correct boundary conditions for the high-resolution model of nonlinear acoustic–gravity waves forced by atmospheric pressure variations,” Pure Appl. Geophys. 175, 3639–3652 (2018). https://doi.org/10.1007/s00024-018-1906-x

    Article  Google Scholar 

  13. S. P. Kshevetskii, “Numerical simulation of nonlinear internal gravity waves,” Comput. Math. Math. Phys. 41, 1777–1791 (2001).

    Google Scholar 

  14. S. P. Kshevetskii, “Modeling of propagation of internal gravity waves in gases,” Comput. Math. Math. Phys. 41 (2), 273–288 (2001).

    Google Scholar 

  15. S. P. Kshevetskii, “Internal gravity waves in nonexponentially density-stratified fluids,” Comput. Math. Math. Phys. 42 (10), 1510–1521 (2002).

    Google Scholar 

  16. S. P. Kshevetskii, “Analytical and numerical investigation of nonlinear internal gravity waves,” Nonlinear Processes Geophys. 8, 37–53 (2001).

    Article  Google Scholar 

  17. J. B. Snively and V. B. Pasko, “Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes,” Geophys. Res. Lett. 30 (24), 2254 (2003). https://doi.org/10.1029/2003GL018436

    Article  Google Scholar 

  18. S. P. Kshevetskii and S. N. Kulichkov, “Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature–disturbance distribution,” Izv., Atmos. Ocean. Phys. 51 (1), 42–48 (2015).

    Article  Google Scholar 

  19. S. N. Kulichkov, N. D. Tsybulskaya, I. P. Chunchuzov, et al., “Studying internal gravity waves generated by atmospheric fronts over the Moscow region” Izv., Atmos. Ocean. Phys. 53 (4), 402–412 (2017).

    Article  Google Scholar 

  20. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://disc.gsfc.nasa.gov. Accessed August 1, 2018.

  21. Kh. P. Pogosyan, Cyclones (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  22. AtmoSym model of atmospheric processes. http://atmos.kantiana.ru. Accessed October 20, 2018.

  23. S. P. Kshevetskii and N. M. Gavrilov, “Vertical propagation, breaking, and effects of nonlinear gravity waves in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 67, 1014–1030 (2005).

    Article  Google Scholar 

  24. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, “The practice of the Lomonosov supercomputer,” Otkrytye Sist., No. 7, 36–39 (2012).

  25. J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues,” J. Geophys. Res. 107 (A12), 1468 (2002). https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was done using equipment of the Moscow State University Center for Shared Research Facilities of Super High-Performance Computational Resources.

Funding

This work was partially supported by the Russian Foundation for Basic Research (project nos. 17-05-00574, Sections 1–3, 6; 18-05-00184 (Section 5); and 18-05-00576 (Sections 2, 4)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Kurdyaeva.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdyaeva, Y.A., Kulichkov, S.N., Kshevetskii, S.P. et al. Vertical Propagation of Acoustic-Gravity Waves from Atmospheric Fronts into the Upper Atmosphere. Izv. Atmos. Ocean. Phys. 55, 303–311 (2019). https://doi.org/10.1134/S0001433819040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819040078

Keywords:

Navigation