Skip to main content
Log in

Remote Assessment of Spectral Reflectance of the Surface of Drained Peat Soils of Polesye on the Basis of Satellite Images of Medium Spatial Resolution

  • USE OF SPACE INFORMATION ABOUT THE EARTH
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The dependence of the spectral reflectance (averaged over an area of approximately 0.023 ha) of peat and degraded peat soils of Polesye on the soil organic carbon content has been investigated under actual field conditions for the first time. The dependence is approximated by exponential and power functions, and the confidence intervals are explicitly calculated for each parameter of the approximating functions. The parameter values for the exponential function appear better validated than the parameter values for the power function, since the corresponding confidence intervals for the former are much narrower. The values of AIC and BIC information criteria show that the power model gives a better description of experimental data for bands 1 and 2, and the exponential model gives a better description for the 3N band of the ASTER spectroradiometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Akima, H., A method of univariate interpolation that has the accuracy of a third-degree polynomial, ACM Trans. Math. Software, 1991, vol. 17, no. 3, pp. 341–366.

    Article  Google Scholar 

  2. Akima, H., Gebhardt, A., Petzold, T., and Maechler, M., Akima: Interpolation of irregularly spaced data. R package version 0.5-10, 2013. http://cran.r-project. org/package=akima. Accessed May 15, 2013.

  3. Archive of Meteorological Observations, Republican Center on Hydrometeorology, Radioactive Pollution Control, and Environmental Monitoring, Ministry of Natural Resources and Environmental Protection. http://www. pogoda.by/zip/.

  4. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Guidebook on Chemical Analysis of Soils), Moscow: Moscow State Univ., 1970.

  5. ASTER User’s Guide, Pt. 2. Level 1 Data Products (Ver.5.1), Earth Remote Sensing Data Analysis Center, March, 2007.

  6. Bambalov, N.N., The limiting value of organic matter content in peat and degraded peat soils, in Innovatsionnye tekhnologii v melioratsii i sel’skokhozyaistvennom ispol’zo-vanii meliorirovannykh zemel’ (Innovation technologies in melioration and agricultural use of meliorated lands), Mat. mezhdunar. nauch.–prakt. konf. (Proceedings of the International Scientific and Practical Conference), Minsk: Belarus: IVC Minfina, 2010, pp. 19–22.

  7. Brockmann Consult and contributors, VISAT Ver. 5.0, 2014. http://www.brockmann-consult.de/cms/web/beam/.

  8. Burnham, K.P. and Anderson, D.R., Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach, New York: Springer, 2002.

    Google Scholar 

  9. Chance, K. and Kurucz, R., An improved high-resolution solar reference spectrum for Earth’s atmosphere measurements in the ultraviolet, visible, and near infrared, J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 111, no. 9, pp. 1289–1295.

    Article  Google Scholar 

  10. Chavez, P.S., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sens. Environ., 1988, vol. 24, no.  3, pp. 459–479.

    Article  Google Scholar 

  11. Chavez, P.S., Radiometric calibration of Landsat Thematic Mapper Multispectral Images, Photogramm. Eng. Remote Sens., 1989, vol. 55, no. 9, pp. 1285–1294.

    Google Scholar 

  12. Cierniewski, J. and Karnieli, A., Virtual surfaces simulating the bidirectional reflectance of semi-arid soils, Int. J. Remote Sens., 2002, vol. 23, no. 19, pp. 4019–4037.

    Article  Google Scholar 

  13. Curcio, J.A., Evaluation of atmospheric aerosol particle size distribution from scattering measurements in the visible and infrared, J. Opt. Soc. Am., 1961, vol. 51, no. 5, pp. 548–551.

    Article  Google Scholar 

  14. Fox, J., The R commander: A basic statistics graphical user interface to R, J. Stat. Software, 2005, vol. 14, no. 9, pp. 1–42.

    Google Scholar 

  15. GeodSolve, Online geodesic calculations using the GeodSolve utility. http://geographiclib.sourceforge.net/cgi-bin/GeodSolve.

  16. GRASS Development Team, Geographic Resources Analysis Support System (GRASS) Software, Ver. 6.4.5, Open Source Geospatial Foundation, 2016. http:// grass.osgeo.org.

  17. Han, Y., Zhao, N., and Zhao, Y., Study on characteristics of multi-angle polarized reflection of peat, in Proc. SPIE 6752, Geoinformatics 2007, Remotely Sensed Data and Information, Ju, W. and Zhao, S., Eds., 2007, pp. 67520C-1–67520C-10.

  18. Hirsch, E., Koren, I., Levin, Z., Altaratz, O., and Agassi, E., On transition-zone water clouds, Atmos. Chem. Phys., 2014, vol. 14, no. 17, pp. 9001–9012.

    Article  Google Scholar 

  19. Iwasaki, A. and Fujisada, H., ASTER geometric performance, IEEE Trans. Geosci. Remote Sens., 2005, vol. 43, no. 12, pp. 2700–2706.

    Article  Google Scholar 

  20. Koren, I., Remer, L.A., Kaufman, Y.J., Rudich, Y., and Martins, J.V., On the twilight zone between clouds and aerosols, Geophys. Res. Lett., 2007, vol. 34, no. 8, L08805.

    Article  Google Scholar 

  21. Levenberg, K.A., Method for the solution of certain non-linear problems in least squares, Quarter. J. Appl. Math., 1944, vol. 2, no. 2, pp. 164–168.

    Google Scholar 

  22. Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., 1963, vol. 11, no. 2, pp. 431–441.

    Article  Google Scholar 

  23. Medvedev, A.G., Gorbliuk, A.V., Ivanov, N.P., and Shabanova, V.I., Optimization of meliorated peat soils to increase their fertility and prevent degradation, in Problemy Polesya (Problems of Polesia), Minsk: Nauka i technika, 1981, no. 7, pp. 79–86.

  24. Moran, M.S., Jackson, R.D., Slater, P.N., and Teillet, P.M., Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output, Remote Sens. Environ., 1992, vol. 41, nos. 2–3, pp. 169–184.

    Article  Google Scholar 

  25. Nelder, J.A. and Mead, R., A simplex method for function minimization, Comput. J., 1965, vol. 7, no. 4, pp. 308–313.

    Article  Google Scholar 

  26. Newville, M., Stensitzki, T., Allen, D.B., and Ingargiola, A., LMFIT: Non-linear least-square minimization and curve-fitting for Python, 2014. http://dx.doi.org/. doi 10.5281/zenodo.11813

  27. Nichiporovich, Z.A., Reflectivity of main types of peat soils in Belarus, Torf. Prom-st., 1991, no. 3, pp. 13–16.

  28. Orlov, D.S. and Grishina, L.A., Praktikum po himii gumusa (Practicum of Soil Ulmin Chemistry), Moscow: MGU, 1981.

  29. Pidoplichko, A.P., Gorbutovich, G.D., Konoiko, M.A., and Dopotko, M.Z., Peat and sapropel deposits, in Problemy Polesya (Problems of Polesia), Minsk: Nauka i technika, 1972, no. 1, pp. 292–313.

  30. Ponomareva, V.V. and Nikolaeva, T.A., Methods for the study of organic matter in peat-bog soils, Pochvoved, 1961, no. 5, pp. 88–95.

  31. R Core Team, R: A language and environment for scientific computing, Vienna, Austria, 2014. http://www.R-project.org/.

  32. Slater, P.N., Doyle, F.J., Fritz, N.L., and Welch, R., Photographic systems for remote sensing, Man. Remote Sens. Am. Soc. Photogramm., 1983, vol. 1, no. 6, pp.  231–291.

    Google Scholar 

  33. Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., and Macomber, S.A., Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?, Remote Sens. Environ., 2001, vol. 75, no. 2, pp. 230–244.

    Article  Google Scholar 

  34. Spiess, A.N. and Neumeyer, N., An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach, BMC Pharmacol., 2010, vol. 10, no. 1, pp. 1–11.

    Article  Google Scholar 

  35. Teillet, P.M. and Fedosejevs, G., On the dark target approach to atmospheric correction of remotely sensed data, Can. J. Remote Sens., 1995, vol. 21, pp. 373–387.

    Article  Google Scholar 

  36. Tsytron, G.S., Smeyan, N.I., Bubnova, T.V., Sergeenko, V.T., and Azarenok, T.N., Reflectivity of man-made organic soils of Belorus Polesia and their diagnostics, Pochvoved. Agrokhim., 2007, no. 1, pp. 84–91.

  37. Tsytron, G.S., Bubnova, T.V., Sergeenko, V.T., and Azarenok, T.N., Diagnostics of man-made organic soils by their reflectivity, in Tr. V mezhdunar. konf. Evolyutsiya pochvennogo pokrova: istoriya idei i metody, golotsennaya evolyutsuya, prognozy (Proceedings of the V International Conference on Soil Cover Evolution: The History of Ideas and Methods, Holocene Evolution and Forecasts), Ivanov, I.V. and Pesochin, L.S., Eds., Pushchino, 2009, pp. 102–104.

  38. Tsytron, G.S., Azarenok, T.N., Kalyuk, V.A., and Bubnova, T.V., On the problem of diagnostics of residually gleyed degro-peat soils], Zemlyarobstva Ahova Raslin, 2011, no. 6, pp. 33–36.

  39. Tucker, C.J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 1979, vol. 8, no. 2, pp. 127–150.

    Article  Google Scholar 

  40. Tyurin, I.V., Newly modified volumetric method of humus determination using chromic acid, Pochvoved, 1931, no. 6, pp. 36–47.

  41. Van der Walt, S., Colbert, S.C., and Varoquaux, G., The NumPy Array: A structure for efficient numerical computation, Comp. Sci. Eng., 2011, vol. 13, pp. 22–30.

    Article  Google Scholar 

  42. Wilson, R.T., Py6S: A Python interface to the 6S radiative transfer model, Comput. Geosci., 2012, vol. 51, pp. 166–171.

    Article  Google Scholar 

  43. Zhumar’, A.Yu., Kovalev, A.A., Kononovich, S.I., Lisitsa, V.D., Pluta, V.E., Smeyan, N.I., Sergeenko, V.T., and Yanovskaya, E.A., Issledovanie opticheskih i fiziko-himicheskih svoystv pochv Belarusi (Study of Optical and Physicochemical Properties of Soils in Belarus), vol. 1: Katalog spektral’nyh i fiziko-himicheskih svoystv pochv Belarusi (Catalog of Spectral and Physicochemical Properties of Soils in Belarus), Minsk, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yanovskiy.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanovskiy, A.A. Remote Assessment of Spectral Reflectance of the Surface of Drained Peat Soils of Polesye on the Basis of Satellite Images of Medium Spatial Resolution. Izv. Atmos. Ocean. Phys. 54, 1141–1151 (2018). https://doi.org/10.1134/S0001433818090426

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818090426

Keywords:

Navigation