Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1068–1075 | Cite as

Quasi-Decadal Variations of Lower Stratosphere Meteorological Parameters and Total Ozone Global Fields Based on Satellite Data

  • K. N. VisheratinEmail author
  • M. V. Kalashnik
USE OF SPACE INFORMATION ABOUT THE EARTH
  • 6 Downloads

Abstract

This paper presents the results of an analysis of the phase relationships between the variations of solar activity (SA) with periods ranging from 8 to 13 years and the quasi-decadal variations (QDVs) of zonally and globally average values of total ozone (TO), and some parameters of the lower stratosphere at 50 and 100 GPa based on the NCEP-NCAR and satellite data. Analysis of the temporal and spatial variability of meteorological parameters and TO has been performed by Fourier, correlation and composite analysis for the period from 1979 to 2015 in the 90° S– 90° N latitudinal belt. The TO spectra have basic oscillations with periods of 116–140 months at all latitudes. The oscillations with periods of 87–96 months are also observed at the high southern latitudes. Significant oscillations of temperature and geopotential height with periods ranging from 95 to 102 and from 127 to 148 months are observed in the 90° S– 55° N latitudinal belt. The oscillations of the meridional and zonal wind velocity have periods within intervals of 85–100 and 120–150 months; their significance varies with altitude. The maxima of the TO QDVs advance the SA maxima by 20 months at the middle and high north latitudes and lag behind by 21 months at the high latitudes of the Southern Hemisphere. The lag between the SA and TO variations reverses its sign at 35°–40° S. On average, the phase of the QDVs of temperature and geopotential height within the 90° S–55° N latitudinal belt lags behind the SA variations approximately by one year and half a year, respectively. The phase relationships between the meridional and zonal wind variations and the 11-year SA cycle vary considerably with time and latitude. The quasi-decadal variations of the globally average TO values coincide with the SA variations.

Keywords:

total ozone content temperature geopotential height meridional and zonal wind lower stratosphere quasi-decadal variations solar activity satellite data spectral and composite analysis 

Notes

ACKNOWLEDGMENTS

The authors express their gratitude to the scientific teams of NCEP-NCAR, NASA, NOAA, WDC-SILSO and G. Bodeker (Bodeker Scientific) for allowing access to their databases.

This work was supported by the Russian Foundation for Basic Research, project no. 14-05-00127.

REFERENCES

  1. 1.
    Baluev, R.V., Assessing statistical significance of periodogram peaks, Mon. Not. R. Astron. Soc., 2008, vol. 385, no. 3, pp. 1279–1285.CrossRefGoogle Scholar
  2. 2.
    Bodeker, G.E., Hassler, B., Young, P.J., and Portmann, R.W., A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulation, Earth Syst. Sci. Data, 2013, vol. 5, pp. 31–43. doi 10.5194/ essd-5-31-2013CrossRefGoogle Scholar
  3. 3.
    Chiodo, G., Marsh, D.R., Garcia-Herrera, R., Calvo, N., and Garcia, J.A., On the detection of the solar signal in the tropical stratosphere, Atmos. Chem. Phys., 2014, vol. 14, pp. 5251–5269.CrossRefGoogle Scholar
  4. 4.
    Dergachev, V.A., Solar activity, cosmic rays, and earth temperature reconstructions for the past two millennia. Pt. 2. Analysis of the relation between the global temperature variations and natural processes, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 2, pp. 139–151.Google Scholar
  5. 5.
    Fedorov, V.M., Spatial and temporal variations in solar climate of the Earth in the present epoch, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 8, pp. 779–791.CrossRefGoogle Scholar
  6. 6.
    Frith, S.M., Kramarova, N.A., Stolarsky, R.S., McPeters, R.D., Bhartia, P.K., and Labow, G.J., Recent changes in column ozone based on the SBUV version 8.6 merged ozone dataset, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 9735–9751. doi 10.1002/ 2014JD021889Google Scholar
  7. 7.
    Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., and White, W., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282CrossRefGoogle Scholar
  8. 8.
    Gray, L.J., Scaife, A.A., Mitchell, D.M., Osprey, S., Ineson, S., Hardiman, S., Butchart, N., Knight, J., Sutton, R., and Kodera, K., A lagged response to the 11‑year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 13, pp. 405–420. doi 10.1002/2013JD020062CrossRefGoogle Scholar
  9. 9.
    Gruzdev, A.N., Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 633–639.Google Scholar
  10. 10.
    Gusev, A.A. and Martin, I.M., Possible evidence of the resonant influence of solar forcing on the climate system, J. Atmos. Sol.-Terr. Phys., 2012, vol. 80, pp. 173–178. doi 10.1016/j.jastp.2012.01.008CrossRefGoogle Scholar
  11. 11.
    Haigh, J.D. and Blackburn, M., Solar influences on dynamical coupling between the stratosphere and troposphere, Space Sci. Rev., 2006, vol. 125, pp. 331–344. doi 10.1007/s11214-006-9067-0CrossRefGoogle Scholar
  12. 12.
    Harris, N.R.P., Hassler, B., Tummon, F., Bodeker, G.E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P.K., Boone, C.D., Bourassa, A., Davis, S.M., Degenstein, D., Delcloo, A., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M.J., Kyrölä, E., Laine, M., Leblanc, S.T., Lambert, J.-C., Liley, B., Mahieu, E., Maycock, A., de Mazière, M., Parrish, A., Querel, R., Rosenlof, K.H., Roth, C., Sioris, C., Staehelin, J., Stolarski, R.S., Stubi, R., Tamminen, J., Vigouroux, C., Walker, K.A., Wang, H.J., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone. Pt. 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 2015, vol. 15, pp. 9965–9982. doi 10.5194/acp-15-9965-2015CrossRefGoogle Scholar
  13. 13.
    Hood, L.L. and Soukharev, B.E., The lower-stratospheric response to 11-yr solar forcing: Coupling to the troposphere–ocean response, J. Atmos. Sci., 2012, vol. 69, no. 6, pp. 1841–1864. doi 10.1175/JAS-D-11-086.1CrossRefGoogle Scholar
  14. 14.
    Jackman, C.H., Marsh, D.R., Kinnison, D.E., Mertens, C.J., and Fleming, E.L., Atmospheric changes caused by galactic cosmic rays over the period 1960–2010, Atmos. Chem. Phys., 2016, vol. 16, pp. 5853–5866. doi 10.5194/acp-16-5853-2016CrossRefGoogle Scholar
  15. 15.
    Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Dool, H., Roy, J., and Fiorino, M., The NCEP/NCAR50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Am. Meteorol. Soc., 2001, vol. 82, no. 2, pp. 247–268.CrossRefGoogle Scholar
  16. 16.
    Knibbe, J.S. and de Laat, A.T.J., Spatial regression analysis on 32 years of total column ozone data, Atmos. Chem. Phys., 2014, vol. 14, pp. 8461–8482. doi 10.5194/acp-14-8461-2014CrossRefGoogle Scholar
  17. 17.
    Kodera, K. and Kuroda, Y., Dynamical response to the solar cycle, J. Geophys. Res., 2002, vol. 107, pp. 4749–4761. doi 10.1029/2002JD002224CrossRefGoogle Scholar
  18. 18.
    Kovalenko, V.A. and Zherebtsov, G.A., Influence of solar activity on the climate change, Atmos. Oceanic Opt., 2014, vol. 27, no. 6, pp. 506–510.CrossRefGoogle Scholar
  19. 19.
    Krivolutsky, A.A. and Cherepanova, L.A., Dement’eva, A.V., Repnev, A.I., and Klyuchnikova, A.V., Global circulation of the Earth’s atmosphere at altitudes from 0 to 135 km simulated with the ARM model. Consideration of the solar activity contribution, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 780–800.Google Scholar
  20. 20.
    Labitzke, K., Sunspots, the QBO and the stratospheric temperature in the north polar region, Geophys. Res. Lett., 1987, vol. 14, pp. 535–537.CrossRefGoogle Scholar
  21. 21.
    Roy, J., The role of the Sun in atmosphere–ocean coupling, Int. J. Clim., 2013, vol. 34, no. 3, pp. 655–677. doi 10.1002/joc.3713CrossRefGoogle Scholar
  22. 22.
    Scargle, J.D., Studies in astronomical time series analysis. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 1982, vol. 263, pp. 835–853.CrossRefGoogle Scholar
  23. 23.
    Smyshlyaev, S.P., Galin, V.Ya., Zimenko, P.A., and Kudryavtsev, A.P., A model study of the atmospheric ozone sensitivity to the solar flux spectral variations caused by solar activity, Russ. Meteorol. Hydrol., 2005, vol. 30, no. 8, pp. 17–25.Google Scholar
  24. 24.
    Smyshlyaev, S.P., Galin, V.Ya., Atlaskin, E.M., and Blakitnaya, P.A., Simulation of the indirect impact that the 11-year solar cycle has on the gas composition of the atmosphere, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 5, pp. 623–634.CrossRefGoogle Scholar
  25. 25.
    Smyshlyaev, S.P., Galin, V.Ya., Blakitnaya, P.A., and Lemishchenko, A.K., Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 16–32.CrossRefGoogle Scholar
  26. 26.
    Visheratin, K.N., Interannual variations and trends in zonal mean series of total ozone, temperature, and zonal wind, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 4, pp. 461–479.CrossRefGoogle Scholar
  27. 27.
    Visheratin, K.N., Relationship between phases of quasi-decadal oscillations of total ozone and the 11-year solar cycle, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 1, pp. 94–102.Google Scholar
  28. 28.
    Visheratin, K.N., Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland), Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 66–73.CrossRefGoogle Scholar
  29. 29.
    Visheratin, K.N., Spatiotemporal variability of the phase of total ozone quasi-decennial oscillations, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 904–910.CrossRefGoogle Scholar
  30. 30.
    Visheratin, K.N. and Kuznetsov, V.I., Main characteristics of the variability of the global field of total ozone from comparison of combined databases, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 3, pp. 165–172. doi 10.21046/2070-7401-2016-13-3-165-172CrossRefGoogle Scholar
  31. 31.
    WDC-SILSO (World Data System—Sunspot Index and Long-Term Solar Observations), Brussels: Royal Observatory of Belgium, 2016.Google Scholar
  32. 32.
    Weber, M., Dikty, S., Burrows, J.P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., and Langematz, U., The Brewer–Dobson circulation and total ozone from seasonal to decadal time scales, Atmos. Chem. Phys., 2011, vol. 11, pp. 11221–11235. doi 10.5194/acp-11-11221-2011CrossRefGoogle Scholar
  33. 33.
    Weng, H.-Y., Impacts of multi-scale solar activity on climate. Pt. II: Dominant timescales in decadal–centennial climate variability, Adv. Atmos. Sci., 2012, vol. 29, no. 4, pp. 887–908. doi 10.1007/s00376-012-1239-0CrossRefGoogle Scholar
  34. 34.
    WMO Global Ozone Research and Monitoring Project, Rep. No. 55, Geneva, Switzerland: World Meteorological Organization, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.NPO TaifunObninskRussia

Personalised recommendations