Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 966–978 | Cite as

A Comparative Analysis of the Characteristics of Active Fires in the Boreal Forests of Eurasia and North America Based on Satellite Data

  • S. A. SitnovEmail author
  • I. I. Mokhov


On the basis of the detection data on active fires from the MODIS satellite instrument in the 2000–2016 period an analysis of the characteristics of forest fires in the boreal zones of Eurasia and North America was carried out. The total number of the forest fires in the boreal zone is dominated by the fires in Northern Eurasia. At the same time, the intensity of the North American forest fires is higher on average than the intensity of the Eurasian forest fires. Along with some tendency to a reduction of the annual number of boreal fires, there are tendencies towards an increase in the intensity of the average forest fire, which are statistically significant for the North American region and for the boreal zone as a whole. The regional features of the long-term characteristics and the seasonal dependence of forest fires, as well as the regional peculiarities of the interannual variations of the fire level in the boreal forests, were discussed. A comparative analysis of the results of detection of fires by MODIS and VIIRS satellite instruments was carried out.


satellite monitoring MODIS VIIRS forest fires boreal zone Northern Eurasia North America regional peculiarities of the fire activity 



This study was supported by the Russian Foundation for Basic Research, project nos. 15-05-07853, 17‑05-01097, and 17-29-05098, and programs of the Russian Academy of Sciences.


  1. 1.
    Abatzoglou, J.T. and Williams, A.P., Impact of anthropogenic climate change on wildfire across western US forests, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 42, pp. 11770–11775.CrossRefGoogle Scholar
  2. 2.
    Afonin, A.V. and Belov, V.V., Results of atmospheric correction of space monitoring data of high-temperature anomalies, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2006, vol. 3, no. 2, pp. 62–67.Google Scholar
  3. 3.
    Akimov, V.A. and Sokolov, Yu.I., Lesnyye pozhary na territorii Rossii: Sostoyaniye i problemy (Forest Fires in Russia: The State and Problems), Moscow: Deks-Press, 2004.Google Scholar
  4. 4.
    Andreae, M.O. and Merlet, P., Emission of trace gases and aerosols from biomass burning, Glob. Biogeochem. Cycles, 2001, vol. 15, no. 4, pp. 955–966.CrossRefGoogle Scholar
  5. 5.
    Bartalev, S.A., Belyaev, A.I., Egorov, V.A., Ershov, D.V., Korovin, G.N., Korshunov, N.A., Kotel’nikov, R.V., and Lupyan, E.A., Validation of the results for detected and estimated areas damaged by forest fires according to satellite monitoring data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2005, vol. 2, no. 2, pp. 343–353.Google Scholar
  6. 6.
    Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1007–1018.CrossRefGoogle Scholar
  7. 7.
    Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in Northern Eurasia according to satellite-monitoring data, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 859–874.CrossRefGoogle Scholar
  8. 8.
    Csiszar, I.I., Morissette, J.T., and Giglio, L., Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in Northern Eurasia, IEEE Trans. Geosci. Remote Sens., 2006, vol. 44, no. 7, pp. 1757–1764.CrossRefGoogle Scholar
  9. 9.
    Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K.P., Justice, C.O., and Wind, B., Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 803–816.Google Scholar
  10. 10.
    Galeev, A.A., Kotel’nikov, R.V., Krasheninnikova, Yu.S., Lupyan, E.A., Sementin, V.L., Flitman, E.V., and Shcherbenko, E.V., Comparison of forest fire data from ISDM-Rosleskhoz satellite, ground-based, and aerial observations, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2008, vol. 5, no. 2, pp. 458–468.Google Scholar
  11. 11.
    Giglio, L., Descloitres, J., Justice, C.O., and Kaufman, Y.J., An enhanced contextual fire detection algorithm for MODIS, Remote Sens. Environ., 2003, vol. 87, pp. 273–282.CrossRefGoogle Scholar
  12. 12.
    Giglio, L., Csiszar, I., and Justice, C.O., Global distribution and seasonality of active fires as observed with the Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) sensors, J. Geophys. Res., 2006, vol. 111, G02016.CrossRefGoogle Scholar
  13. 13.
    Giglio, L., Schroeder, W., and Justice, C.O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 2016, vol. 178, pp. 31–41.CrossRefGoogle Scholar
  14. 14.
    Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morisette, J.T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y., The MODIS fire products, Remote Sens. Environ., 2002, vol. 83, pp. 244–262.CrossRefGoogle Scholar
  15. 15.
    Kasischke, E.S., Christensen, N.L., and Stocks, B.J., Fire, global warming, and the carbon balance of boreal forests, Ecol. Appl., 1995, vol. 5, no. 2, pp. 437–451.CrossRefGoogle Scholar
  16. 16.
    Korovin, G.N., Analysis of distribution of forest fires in Russia, in Fires in Ecosystems of Boreal Eurasia, Goldammer, J.G. and Furyaev, V.V., Eds., The Hague: Kluwer Academic, 1996, pp. 112–128.Google Scholar
  17. 17.
    MacDougall, A.S., McCann, K.S., Gellner, G., and Turkington, R., Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse, Nature, 2013, vol. 494, no. 7435, pp. 87–89.CrossRefGoogle Scholar
  18. 18.
    Malevskii-Malevich, S.P., Mol’kentin, E.K., Nadozhina, E.D., Semioshina, A.A., Sall’, I.A., Khlebnikova, E.I., and Shklyarevich, O.B., Analysis of changes in fire-hazard conditions in the forests in Russia in the 20th and 21st centuries on the basis of climate modeling, Russ. Meteorol. Hydrol., 2007, vol. 32, no. 3, pp. 154–161.CrossRefGoogle Scholar
  19. 19.
    Marlon, J.R., Bartlein, P.J., Gavin, D.G., Long, C.J., Anderson, R.S., Briles, C.E., Brown, K.J., Daniele Colombaroli, D., Hallett, D.J., Power, M.J., Scharf, E.A., and Walsh, M.K., Long-term perspective on wildfires in the western USA, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 9, pp. E535–E543.CrossRefGoogle Scholar
  20. 20.
    Mokhov, I.I., Action as an integral characteristic of climatic structures: Estimates for atmospheric blockings, Dokl. Earth Sci., 2006, vol. 409, no. 2, pp. 925–928.CrossRefGoogle Scholar
  21. 21.
    Mokhov, I.I. and Chernokulsky, A.V., Regional model assessments of the risk of forest fires in the Asian part of Russia under climate changes, Geogr. Prir. Resur., 2010, no. 2, pp. 120–126.Google Scholar
  22. 22.
    Mokhov, I.I. and Timazhev, A.V., Model assessment of possible changes of atmospheric blockings in the Northern Hemisphere under RCP scenarios of anthropogenic forcings, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 63–67.CrossRefGoogle Scholar
  23. 23.
    Mokhov, I.I., Chernokulsky, A.V., and Shkolnik, I.M., Regional model assessments of fire risks under global climate changes, Dokl. Earth Sci., 2006, vol. 411, no. 9, pp. 1485–1488.CrossRefGoogle Scholar
  24. 24.
    Mokhov, I.I., Khon, V.Ch., Timazhev, A.V., Chernokulsky, A.V., and Semenov, V.A., Hydrological anomalies and trends in changes in the Amur River due to climate changes, in Ekstremal’nye pavodki v basseine r. Amur: prichiny, prognozy, rekommendatsii (Extreme Floods in the Amur River Basin: Causes, Predictions, and Recommendations), Moscow: Rosgidromet, 2014a, pp. 81–120.Google Scholar
  25. 25.
    Mokhov, I.I., Timazhev, A.V., and Lupo, A.R., Changes in atmospheric blocking characteristics within Euro–Atlantic region and Northern Hemisphere as a whole in the 21st century from model simulations using RCP anthropogenic scenarios, Global Planet. Change, 2014b, vol. 122, pp. 265–270.CrossRefGoogle Scholar
  26. 26.
    OD RF-2. Vtoroy otsenochnyi doklad Roskomgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiyskoi Federatsii. Obshcheye rezyume (The Second Assessment Report of Russian Hydrometeorological Service on Climate Changes and Their Consequences on the Territory of the Russian Federation. Overall Summary), Moscow: Planeta, 2014.Google Scholar
  27. 27.
    Peterson, D., Wang, J., Ichoku, C., Hyer, E., and Ambrosia, V., A sub-pixel -based calculation of fire radiative power from MODIS observations: 1. Algorithm development and initial assessment, Remote Sens. Environ., 2013, vol. 129, pp. 262–279.CrossRefGoogle Scholar
  28. 28.
    Rogers, B.M., Soja, A.J., Goulden, M.L., and Randerson, J.T., Influence of tree species on continental differences in boreal fires and climate feedbacks, Nature Geosci., 2015, vol. 8, no. 3, pp. 228–234.CrossRefGoogle Scholar
  29. 29.
    Schroeder, W., Ellicott, E., Ichoku, C.M., Dickinson, M., Ottmar, R., Clements, C., Hall, D., Ambrosia, V., and Kremens, R., Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne, and spaceborne sensor data, Remote Sens. Environ., 2014, vol. 140, pp. 719–730.CrossRefGoogle Scholar
  30. 30.
    Shvidenko, A.Z. and Shchepashchenko, D.G., Climate changes and forest fires in Russia, Lesovedenie, 2013, no. 5, pp. 50–61.Google Scholar
  31. 31.
    Shvidenko, A.Z., Shchepashchenko, D.G., Vaganov, E.A., Sukhinin, A.I., Maksyutov, Sh.Sh., McCallum, I., and Lakyda, I.P., Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1678–1682.CrossRefGoogle Scholar
  32. 32.
    Sitnov, S.A. and Mokhov, I.I., Anomalous transboundary transport of the products of biomass burning from North American wildfires to Northern Eurasia, Dokl. Earth Sci., 2017, vol. 475, no. 1, pp. 832–835.CrossRefGoogle Scholar
  33. 33.
    Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., Kopeikin, V.M., Ponomareva, T.Ya., and Karpov, A.V., The effect of atmospheric circulation on the evolution and radiative forcing of smoke aerosol over European Russia during the summer of 2010, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 9, pp. 1006–1918.CrossRefGoogle Scholar
  34. 34.
    Sitnov, S.A., Mokhov, I.I., and Gorchakov, G.I., The Link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of large-scale atmospheric circulation, Dokl. Earth Sci., 2017a, vol. 472, no. 2, pp. 190–195.CrossRefGoogle Scholar
  35. 35.
    Sitnov, S.A., Mokhov, I.I., Gorchakov, G.I., and Dzhola, A.V., Smoke haze over the European part of Russia in the summer of 2016: A link to wild fires in Siberia and atmospheric circulation anomalies, Russ. Meteorol. Hydrol., 2017b, vol. 42, no. 8, pp. 518–528.CrossRefGoogle Scholar
  36. 36.
    Sputnikovyi monitoring lesnykh pozharov v Rossii. Itogi. Problemy. Perspektivy (Satellite Monitoring of Forest Fires in Russia: Results, Problems, and Perspectives), Belov, V.V., Ed., Novosibirsk: IOA SO RAN, GPNTB, 2003.Google Scholar
  37. 37.
    Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G.R., Mason, J.A., and McKenney, D.W., Climate change and forest fire potential in Russian and Canadian boreal forests, Clim. Change, 1998, vol. 38, no. 1, pp. 1–13.CrossRefGoogle Scholar
  38. 38.
    Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y., and van Leeuwen, T.T., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural and peat fires (1997–2009), Atmos. Chem. Phys., 2010, vol. 10, pp. 11707–11735.CrossRefGoogle Scholar
  39. 39.
    Westerling, A.L., Hidalgo, H.G., Cayan, D.R., and Swetnam, T.W., Warming and earlier spring increase western U.S. forest wildfire activity, Science, 2006, vol. 313, no. 5789, pp. 940–943.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations