Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 979–985 | Cite as

Determination of the Energy Properties of Wildfires in Siberia by Remote Sensing

  • E. I. PonomarevEmail author
  • E. G. Shvetsov
  • Yu. O. Usataya


As applied to the conditions of wildfires in Siberia, remote sensing is adapted to record the radiation power from the active fire zone in the range of 3.929–3.989 μm (Terra/MODIS data). The limits of variation of the detected values ​​of heat radiation are evaluated. Sporadic peaks that exceed the mean value of heat radiation in the fire field by a value of 2.5σ were correlated with high-intensity fires, including crown fires. The probability of remote fire detection in crown stage was no less than 65%. The quantitative dependence of the Fire Radiative Power (FRP) on the area of ​​the active zone was determined using a subpixel analysis. The fraction of forest fires in Siberia with areas of extreme heat radiation is shown to be 5.5 ± 1.2% of the total wildfires. The total area of ​​high-intensity wildfires including crown fires is at least 8.5% of the average annual wildfire area and reaches values ​​of 15–25% during extreme fire seasons.


vegetation fire active fire zone fire radiative power crown fire sub-pixel analysis 



This work was supported by the Russian Science Foundation, project no. 14-24-00112, the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Territory Fund for Support of Scientific, Scientific and Technical Activities, projects nos. 15-45-04423 and 17-41-240475.


  1. 1.
    Bartalev, S.A., Stytsenko, F.V., Egorov, V.A., and Loupian, E.A., Satellite assessment of the destruction of Russian forest fires), Lesovedenie, 2015, no. 2, pp. 83–94.Google Scholar
  2. 2.
    Boschetti, L. and Roy, D.P., Strategies for the fusion of satellite fire radiative power with burned area data for fire radiative energy derivation, J. Geophys. Res., 2009, vol. 114, D20302.CrossRefGoogle Scholar
  3. 3.
    Buryak, L.V., Sukhinin, A.I., Kalenskaya, O.P., and Ponomarev, E.I., Effects of fires in ribbon-like pine forests of Southern Siberia, Contemp. Probl. Ecol., 2011, vol. 4, no. 3, pp. 248–253.CrossRefGoogle Scholar
  4. 4.
    De Groot, W.J., Cantin, A.S., Flannigan, M.D., Soja, A.J., Gowman, L.M., and Newbery, A., A comparison of Canadian and Russian boreal forest fire regimes, Forest Ecol. Manage., 2013, no. 294, pp. 23–34. doi 10.1016/ j.foreco.2012.07.033Google Scholar
  5. 5.
    Dozier, J., A method for satellite identification of surface temperature fields of sub-pixel resolution, Remote Sens. Environ., 1981, vol. 11, pp. 221–229.CrossRefGoogle Scholar
  6. 6.
    Forkel, M., Thonicke, K., Beer, C., Cramer, W., Bartalev, S., and Schmullius, C., Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia, Environ. Res. Lett., 2012, vol. 7, no. 044021. doi 10.1088/1748–9326/7/4/ 044021Google Scholar
  7. 7.
    Giglio, L., MODIS Collection 5 Active Fire Product User’s Guide (Ver. 2.5, 31 March 2013), 2013.Google Scholar
  8. 8.
    Ichoku, C. and Kaufman, Y.J., A method to derive smoke emission rates from MODIS fire radiative energy measurements, IEEE Trans. Geosci. Remote Sens., 2005, vol. 43, pp. 2636–2649.CrossRefGoogle Scholar
  9. 9.
    Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morisette, J.T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y., The MODIS fire products, Remote Sens. Environ., 2002, no. 83, pp. 244–262.Google Scholar
  10. 10.
    Kaufman, Y.J., Kleidman, R.G., and King, M.D., SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS, J. Geophys. Res., 1998, vol. 103, no. D24, pp. 31955–31968.CrossRefGoogle Scholar
  11. 11.
    Konev, E.V., Fizicheskie osnovy goreniya rastitel’nyh materialov (Physical Bases of Plant Matter Combustion), Novosibirsk, 1977.Google Scholar
  12. 12.
    Krylov, A., McCarty, J.L., Potapov, P., Loboda, T., Tyukavina, A., Turubanova, S., and Hansen, M.C., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environ. Res. Lett., 2014, vol. 9, no. 105007, pp. 1–8. doi 10.1088/1748–9326/9/10/105007CrossRefGoogle Scholar
  13. 13.
    Kumar, S.S., Roy, D.P., Boschetti, L., and Kremens, R., Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations, J. Geophys. Res., 2011, vol. 116, D19303. doi 10.1029/2011JD015676CrossRefGoogle Scholar
  14. 14.
    Matheron, G., Traité de géostatistique appliquée, Paris: Technip, 1962; Moscow: Mir, 1968.Google Scholar
  15. 15.
    Mottram, G.N., Wooster, M.J., Balster, H., George, C., Gerrard, F., and Beisley, J., The use of MODIS-derived fire radiative power to characterize Siberian boreal forest fires, in Proc. 31st International Symposium on Remote Sensing of Environment, St. Petersburg, 2005.Google Scholar
  16. 16.
    NASA LAADS. html. Accessed July 27, 2016.Google Scholar
  17. 17.
    Ponomarev, E.I., Classification of wildfires in Siberia in terms of radiation intensity according to TERRA/MODIS data, Issled. Zemli Kosmosa, 2014, no. 3, pp. 56–64.Google Scholar
  18. 18.
    Ponomarev, E.I. and Buryak, L.V., The use of DMC satellite images in the monitoring of forest disturbance, Geogr. Prir. Resur., 2007, no. 4, pp. 135–139.Google Scholar
  19. 19.
    Ponomarev, E.I. and Shvetsov, E.G., Characteristics of vegetation fire categories in Siberia according to satellite and other observations, Issled. Zemli Kosmosa, 2013, no. 5, pp. 45–54. doi 10.7868/S0205961413050035Google Scholar
  20. 20.
    Ponomarev, E.I. and Shvetsov, E.G., Satellite detection of forest fires and geoinformation methods for calibrating of the results, Issled. Zemli Kosmosa, 2015, no. 1, pp. 84–91. doi 10.15372/SEJ20150308Google Scholar
  21. 21.
    Shvetsov, E.G. and Ponomarev, E.I., Estimating the influence of external environmental factors on fire radiative power using satellite imagery, Contemp. Probl. Ecol., 2015, vol. 8, no. 3, pp. 337–343. doi 10.1134/S1995425515030142CrossRefGoogle Scholar
  22. 22.
    Shvidenko, A.Z. and Schepaschenko, D.G., Climate change and wildfires in Russia, Contemp. Probl. Ecol., 2013, vol. 6, no. 7, pp. 683–692. doi 10.1134/S199542551307010XCrossRefGoogle Scholar
  23. 23.
    Stocks, B.J. and Hartley, G.R., Fire Behavior in Three Jack Pine Fuel Complexes, Sault Ste. Marie, Ontario: Natural Resources Canada, Great Lakes Forestry Centre, 1995.Google Scholar
  24. 24.
    Valendik, E.N. and Kosov, I.V., Thermal radiation of forest fires and its possible impact on timber stand), Khvoinye Boreal’noi Zony, 2008, vol. 25, nos. 1–2, pp. 88–92.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. I. Ponomarev
    • 1
    • 2
    Email author
  • E. G. Shvetsov
    • 1
  • Yu. O. Usataya
    • 2
  1. 1.Federal Research Center “Krasnoyarsk Science Center”, V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations