Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1076–1088 | Cite as

Spatiotemporal Variability of High-Altitude Jet Streams from Satellite Measurements

  • A. F. NerushevEmail author
  • K. N. Visheratin
  • R. V. Ivangorodsky


Results of an investigation into the spatiotemporal variability of the main characteristics of jet streams (JSs) in the upper troposphere of the Northern Hemisphere in the field of view of European geostationary meteorological satellites for the period 2007–2015 are presented. The JS characteristics are obtained using an automated method for calculating the horizontal wind velocity profile based on atmospheric sounding data from the SEVIRI radiometer in the 6.2-μm water vapor channel. Significant linear trends of most JS characteristics are revealed. It is shown that the relative increase in the number of JSs and their effective lifetime were 25 and 22%, respectively, and the relative decrease in the maximum wind speed on the axis and the horizontal velocity gradient on the cyclonic and anticyclonic sides were 7, 13, and 20%. The annual variation is most pronounced for the number of JSs, their maximum velocity, and average area and width. One characteristic feature is the synchronous annual variability of the maximum velocity and width of JSs determined by the isotach level V = 30 m/s. A pronounced horizontal asymmetry of the wind-velocity profile in JSs is noted. A stable annual oscillation and its harmonics are observed in amplitude spectra and waveletograms of time series of most daily and monthly mean characteristics. Significant oscillations were observed with periods of 19–23 and 37–39 days and 26.5–27.5, 35–37, and 42–45 months.


jet streams spatiotemporal variability upper troposphere geostationary satellites spectral and wavelet analysis 



We thank the employees from SRC Planeta T.L. Kormashova, and A.N. Filinov for providing the SEVIRI radiometer measurements.


  1. 1.
    Abarca del Rio, R., Gambis, D., and Salstein, D.A., Interannual signals in length of day and atmospheric angular momentum, Ann. Geophys., 2000, vol. 18, pp. 347–364.CrossRefGoogle Scholar
  2. 2.
    Atmosfera: Spravochnik (The Atmosphere: A Handbook), Leningrad: Hydrometeoizdat, 1991.Google Scholar
  3. 3.
    Baluev, R.V., Assessing statistical significance of periodogram peaks, Mon. Not. R. Astron. Soc., 2008, vol. 385, no. 3, pp. 1279–1285.CrossRefGoogle Scholar
  4. 4.
    Baranov, A.A. and Solonin, S.V., Aviatsionnaya meteorologiya (Aviation Meteorology), Leningrad: Gidrometeoizdat, 1975.Google Scholar
  5. 5.
    Bogatkin, O.G., Aviatsionnaya meteorologiya (Aviation Meteorology), St. Petersburg: RGGMU, 2005.Google Scholar
  6. 6.
    Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H.J., Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 34, pp. 12331–12336.CrossRefGoogle Scholar
  7. 7.
    Doklad ob osobennostyakh klimata na territorii Rossiyskoi Federatsii za 2015 god (Report on Climate Peculiarities in the Territory of the Russian Federation for 2015), Moscow: 2016.Google Scholar
  8. 8.
    Dunkerton, T.J., Quasi-biennial and subbiennial variations of stratospheric trace constituents derived from HALOE observations, J. Atmos. Sci., 2001, vol. 58, pp. 7–25.CrossRefGoogle Scholar
  9. 9.
    Hall, R., Jones, J., Hanna, E., Scaife, A., and Erdélyi, R., Drivers and potential predictability of summer time North Atlantic polar front jet variability, Clim. Dyn., 2016. doi 10.1007/s00382-016-3307-0Google Scholar
  10. 10.
    Ivangorodskiy, R.V. and Nerushev, A.F., Characteristics of upper tropospheric jet streams inferred from the data of European geostationary meteorological satellites, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 1, pp. 45–53.Google Scholar
  11. 11.
    Jiang, N., Neelin, J.D., and Ghil, M., Quasi-quadrennial and quasi-biennial variability in the equatorial pacific, Clim. Dyn., 1995, vol. 12, pp. 101–112.CrossRefGoogle Scholar
  12. 12.
    Kalashnik, M.V., Generation of internal gravity waves by vortex disturbances in a shear flow, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 6, pp. 638–647.CrossRefGoogle Scholar
  13. 13.
    Kalashnik, M.V., Nerushev, A.F., and Ivangorodskiy, R.V., Characteristic scales and horizontal asymmetry of jet streams in the Earth’s atmosphere, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 2, pp. 156–163.CrossRefGoogle Scholar
  14. 14.
    Masters, J., The jet stream is getting weird, Sci. Am., 2014, vol. 311, no. 6, pp. 68–75.CrossRefGoogle Scholar
  15. 15.
    Nerushev, A.F., Jet Streams in the Earth’s atmosphere, Zemlya Vselennaya, 2014, no. 6, pp. 16–30.Google Scholar
  16. 16.
    Nerushev, A.F. and Kramchaninova, E.K., Method for determining atmospheric motion characteristics using measurements on geostationary meteorological satellites, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1104–1114.CrossRefGoogle Scholar
  17. 17.
    Nerushev, A.F., Kramchaninova, E.K., Solov’yev, V.I., Determination of characteristics of atmospheric motions from satellite multiwave remote sensing data, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 4, pp. 441–450.CrossRefGoogle Scholar
  18. 18.
    Palmen, E. and Newton, C.W., Atmospheric Circulation Systems, New York: Academic, 1969; Leningrad: Gidrometeoizdat, 1973.Google Scholar
  19. 19.
    Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H.J., Quasiresonant amplification of planetary waves and recent northern hemisphere weather extremes, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 14, pp. 5336–5341.CrossRefGoogle Scholar
  20. 20.
    Pogosyan, H.P., Struinye techeniya v atmosphere (Jet Streams in the Atmosphere), Leningrad: Gidrometeoizdat, 1960.Google Scholar
  21. 21.
    Scargle, J.D., Studies in astronomical time series analysis. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 1982, vol. 263, pp. 835–853.CrossRefGoogle Scholar
  22. 22.
    Screen, J.A. and Simmonds, I., Amplified mid-latitude planetary waves favor particular regional weather extremes, Nat. Clim. Change, 2014, vol. 4, pp. 704–709.CrossRefGoogle Scholar
  23. 23.
    Visheratin, K.N. and Kuznetsov, V.I., Spatiotemporal variations in the phase of main oscillations of total ozone content from TOMS-SBUV satellite data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 192–199.Google Scholar
  24. 24.
    Visheratin, K.N., Kamenogradskii, N.E., Kashin, F.V., Semenov, V.K., Sinyakov, V.P., and Sorokina, L.I., Spectral–temporal structure of variations in the atmospheric total ozone in Central Eurasia, Izv., Atmos. Ocean. Phys., 2006, vol. 42, no. 2, pp. 184–202.CrossRefGoogle Scholar
  25. 25.
    Vorob’ev, V.I., Struynye techeniya v vysokikh i umerennykh shirotakh (Jet Streams at High and Moderate Altitudes), Leningrad: Gidrometeoizdat, 1960.Google Scholar
  26. 26.
    Vorob’ev, V.I., Sinopticheskaya meteorologiya (Synoptic Meteorology), Leningrad: Gidrometeoizdat, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. F. Nerushev
    • 1
    Email author
  • K. N. Visheratin
    • 1
  • R. V. Ivangorodsky
    • 1
  1. 1.NPO TyphoonObninskRussia

Personalised recommendations