Skip to main content
Log in

Models of Pattern Recognition and Forest State Estimation Based on Hyperspectral Remote Sensing Data

  • METHODS AND MEANS OF SATELLITE DATA PROCESSING AND INTERPRETATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Model applications of airborne hyperspectral remote sensing data for the recognition of forest stand objects and parameterization of the environmental role of forests in climatic models are discussed. The article is focused primarily on a comparison of the data obtained by ground-based forest inspections and the results of processing of hyper-spectral images of a test area. The examples of such a comparison intended to determine the net primary productivity of forests and other parameters characterizing the biodiversity of forest vegetation are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abend, K., Harley, T.J., and Kanal, L.N., Classification of binary random patterns, IEEE Trans. Inf. Theory, 1965, vol. 11, pp. 538–544.

    Article  Google Scholar 

  2. Alekseyev, V.A., Svetovoy rezhim lesa (The Light Regime of Forests], Leningrad: Nauka, 1975. Besag, J., Towards Bayesian image analysis, J. Appl. Stat., 1989, vol. 16, pp. 395–406.

    Article  Google Scholar 

  3. Cost, S. and Salzberg, S., A weighted nearest neighbor algorithm for learning with symbolic features, Mach. Learn., 1993, vol. 10, pp. 57–78.

    Google Scholar 

  4. Dietterich, T.G. and Bakiri, G., Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res., 1995, vol. 2, pp. 263–286.

    Article  Google Scholar 

  5. Gower, S.T., Krankina, O., Olson, M., Apps, M., Linder, S., and Wang, C., Net primary production and carbon allocation patterns of boreal forest ecosystems, Ecol. Appl., 2001, vol. 11, pp. 1395–1411.

    Article  Google Scholar 

  6. Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., Francois, C., and Ustin, S.L., PROSPECT + SAIL models: A review of use for vegetation characterization, Remote Sens. Environ., 2009, vol. 113, pp. S56–S66.

    Article  Google Scholar 

  7. Kozoderov, V.V. and Dmitriev, E.V., Remote sensing of soils and vegetation: Regional aspects, Int. J. Remote Sens., 2008, vol. 29, no. 9, pp. 2733–2748.

    Article  Google Scholar 

  8. Kozoderov, V.V. and Dmitriev, E.V., Remote sensing of soils and vegetation: Quantitative parameters retrieval using pattern-recognition techniques and forest stand structure assessment, Int. J. Remote Sens., 2011, vol. 32, pp. 5699–5717.

    Article  Google Scholar 

  9. Kozoderov, V.V. and Dmitriev, E.V., Testing different classification methods in airborne hyperspectral imagery processing, Opt. Express, 2016, vol. 24, no. 10, pp. A956–A965.

    Article  Google Scholar 

  10. Kozoderov, V.V., Kondranin, T.V., Kosolapov, V.S., Golovko, V.A., and Dmitriev, E.V., Restoration of biomass and other parameters of the state of the soil–vegetation cover from processed multispectral satellite images, Issled. Zemli Kosmosa, 2007, no. 1, pp. 57–65.

  11. Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., and Sokolov, A.A., Retrieval of forest attributes using optical airborne remote sensing data, Opt. Express, 2014a, vol. 22, no. 13, pp. 15410–15423.

    Article  Google Scholar 

  12. Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., and Kamentsev, V.P., A system for processing hyperspectral imagery: Application to detecting forest species, Int. J. Remote Sens., 2014b, vol. 35, no. 15, pp. 5926–5945.

    Google Scholar 

  13. Kozoderov, V.V., Dmitriev, E.V., and Sokolov, A.A., Improved technique for retrieval of forest parameters from hyperspectral remote sensing data, Opt. Express, 2015a, vol. 23, no. 24, pp. A1342–A1353.

    Article  Google Scholar 

  14. Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., and Kamentsev, V.P., Bayesian classifier applications of airborne hyperspectral imagery processing for forested areas, Adv. Space Res., 2015b, vol. 55, no. 11, pp. 2657–2667.

    Article  Google Scholar 

  15. Kozoderov, V.V., Kondranin, T.V., Dmitriyev, E.V., and Kamentsev, V.P., Validation of information products for processing of aircraft hyperspectral images, Issled. Zemli Kosmosa, 2015c, no. 1, pp. 32–43.

  16. Kozoderov, V.V., Dmitriev, E.V., and Kamentsev, V.P., Kognitivnye tekhnologii distantsionnogo zondirovaniya v prirodopol’zovanii (Cognitive Technologies of Remote Sensing in the Use of Natural Resources), Tver’: Tverskoi Gos. Univ., 2016.

  17. Kozoderov, V.V., Kondranin, T.V., and Dmitriev, E.V., Comparison analysis of recognition algorithms of forest-cover objects on hyperspectral air-borne and space-borne images, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 6, pp. 1132–1141.

  18. Li, Z., Kurz, W.A., Apps, M.J., and Beukema, S.J., Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: Recent improvements and implications for the estimation of NPP and NEP, Can. J. Forest Res., 2003, vol. 33, pp. 126–136.

    Article  Google Scholar 

  19. Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz, T., Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide, Ann. Forest Sci., 2014, vol. 71, pp. 211–225.

    Article  Google Scholar 

  20. Ross, Yu.K., Radiatsionnyi rezhim i arkhitektonika rastitel’nogo pokrova (Radiation Regime and Vegetation Architectonics), Leningrad: Gidrometeoizdat, 1975.

  21. Shvidenko, A.Z., Nilsson, S., Stolbovoi, V.S., et al., Aggregated assessment of main indicators of the bioproduction and carbon budget of terrestrial ecosystems of Russia. 2. Net-primary production of ecosystems, Ekologiya, 2001, no. 2, pp. 83–90.

  22. Shvidenko, A.Z., Shchepashchenko, D.G., Vaganov, E.A., and Nilsson, S., Net primary production of forest ecosystems in Russia: A new estimate, Dokl. Earth Sci., 2008a, vol. 421, no. 6, pp. 1009–1011.

    Article  Google Scholar 

  23. Shvidenko, A.Z., Shchepashchenko, D.G., Nilsson, S., and Bului, Yu.I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoy Yevrazii (normativno-spravochnye materialy) (Tables and Models of Growth and Productivity of Plantations of the main Forest-Producing Species of Northern Eurasia (Reference Data)), Moscow: Federal Forestry Agency, 2008b.

  24. Vapnik, V. and Chapelle, O., Bounds on error expectation for support vector machines, Neural Comput., 2000, vol. 12, pp. 2013–2036.

    Article  Google Scholar 

  25. Zamolodchikov, D.G. and Utkin, A.I., System of conversion relations for calculating the net primary production of forest ecosystems from tree stocks, Lesovedeniye, 2000, no. 6, pp. 54–63.

Download references

ACKNOWLEDGMENTS

The study was financially supported by the Russian Science Foundation (project no. 16-11-00007) and the Russian Foundation for Basic Research (project nos. 16-01-00107 and 16-51-55019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kozoderov.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozoderov, V.V., Dmitriev, E.V. Models of Pattern Recognition and Forest State Estimation Based on Hyperspectral Remote Sensing Data. Izv. Atmos. Ocean. Phys. 54, 1291–1302 (2018). https://doi.org/10.1134/S0001433818090220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818090220

Keywords:

Navigation