Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1089–1101 | Cite as

Mesoscale Atmospheric Cyclonic Vortices over the Black and Caspian Seas as Seen in Satellite Remote Sensing Data

  • A. Yu. IvanovEmail author


This is an analysis of optical images from Terra, Aqua, and Suomi NPP satellites, as well as associated synthetic aperture radar (SAR) images from Radarsat-1/2 and Sentinel-1A/1B satellites, which reflect mesoscale atmospheric cyclonic vortices (MACV) and local cyclones over the Black and Caspian seas. The MACVs are observed both in the cloudiness field on optical images and in the sea-surface roughness field on SAR images, induced by the near-surface wind. The analysis SAR images of the sea surface and optical images combined with NCEP reanalysis has allowed us to obtain both qualitative and quantitative data on these phenomena. The formation of MACVs has been shown to occur rather frequently over the eastern Black Sea, as well as over the northern and middle Caspian Sea. They are 50 to 200 km in diameter, their lifetime is usually almost a day, and they can create wind speeds of 10–12 m/s over the sea surface. From time to time, they can deepen and lead to a sharp deterioration in the local and regional weather.


Black Sea Caspian Sea mesoscale atmospheric vortices local cyclones SAR images optical images multisensor observations 



The Radarsat-1 and Radarsat-2 SAR images were provided by SCANEX Group. The original rights of Radarsat-1 and Radarsat-2 data belong to MacDonald, Dettwiler and Associates Ltd. (MDA); the original rights of Sentinel-1А and Sentinel-1B data belong to the European Space Agency. This study was supported by the Russian Science Foundation, grant no. 14-50-00095 provided to Shirshov Institute of Oceanology, Russian Academy of Sciences.


  1. 1.
    Alpers, W., Measurement of mesoscale oceanic and atmospheric phenomena by ERS-1 SAR, URSI Radio Sci. Bull., 1995, vol. 275, pp. 14–22.Google Scholar
  2. 2.
    Alpers, W., Ivanov, A.Yu., and Dagestad, K.-F., Observation of local wind fields and cyclonic atmospheric eddies over the eastern Black Sea using Envisat synthetic aperture radar images, Issled. Zemli Kosmosa, 2010, no. 5, pp. 46–58.Google Scholar
  3. 3.
    Alpers, W., Ivanov, A.Yu., and Dagestad, K.-F., Encounter of foehn wind with an atmospheric eddy over the black sea as observed by the synthetic aperture radar onboard the Envisat satellite, Mon. Weather Rev., 2011, vol. 139, no. 12, pp. 3992–4000. doi 10.1175/MWR-D-11-00074.1CrossRefGoogle Scholar
  4. 4.
    Alpers, W., Mouche, A., Horstmann, J., Ivanov, A.Yu., and Barabanov, V.S., Application of a new algorithm using Doppler information to retrieve complex wind fields over the Black Sea from Envisat SAR images, Int. J. Remote Sens., 2015, vol. 36, no. 3, pp. 863–881.CrossRefGoogle Scholar
  5. 5.
    Efimov, V.V. and Yarovaya, D.A., Numerical modeling of quasi-two-dimensional vortices in the atmosphere over the Black Sea, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 2, pp. 201–216.CrossRefGoogle Scholar
  6. 6.
    Efimov, V.V., Shokurov, M.V., Yarovaya, D.A., and Hein, D., Statistics of mesoscale cyclonic eddies over the Black Sea, Phys. Oceanogr., 2009, vol. 19, no. 4, pp. 211–224.CrossRefGoogle Scholar
  7. 7.
    Efimov, V.V., Barabanov, V.S., and Krupin, A.V., Modeling of mesoscale features of the atmospheric circulation in the Crimean region of the Black Sea, Morsk. Gidrofiz. Zh., 2012, no. 1, pp. 64–74.Google Scholar
  8. 8.
    Gavrikov, A.V. and Ivanov, A.Yu., Anomalously strong bora over the Black Sea: Observations from space and numerical modeling, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 5, pp. 546–556.CrossRefGoogle Scholar
  9. 9.
    German, M.A., Sputnikovaya meteorologiya (Satellite Meteorology), Leningrad: Gidrometeoizdat, 1975.Google Scholar
  10. 10.
    German, M.A., Kosmicheskie metody issledovaniya v meteorologii (Satellite Research Methods in Meteorology), Leningrad: Gidrometeoizdat, 1985.Google Scholar
  11. 11.
    Gurvich, I.A., Intense mesoscale cyclones over Far Eastern seas in the cold half of the year according to satellite sounding data, Cand. Sci. (Geogr.) Dissertation, Vladivostok, 2013.Google Scholar
  12. 12.
    Ivanov, A.Yu., The atmospheric front over the Caspian Sea according to radar, optical, and meteorological data, Issled. Zemli Kosmosa, 2014, no. 4, pp. 16–26.Google Scholar
  13. 13.
    Ivanov, A.Yu., Novaya Zemlya bora and polar cyclones in spaceborne SAR and optical imagery, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1142–1154.CrossRefGoogle Scholar
  14. 14.
    Lutsenko, E.I. and Lagun, V.E., Polyarnye mezomasshtabnye tsiklonicheskie vikhri v atmosfere Arktiki (Polar Mesoscale Cyclonic Vortices in the Arctic Atmosphere), St. Petersburg, AANII, 2010.Google Scholar
  15. 15.
    Mitnik, L.M., Mesoscale atmospheric vortices in the Okhotsk and Bering seas: Results of satellite multisensor study, in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, Nihoul, J.C.J. and Kostyanoi, A.G., Eds., Dordrecht: Springer, 2009.Google Scholar
  16. 16.
    Radiolokatsiya poverkhnosti Zemli iz kosmosa (Radiolocation of the Earth’s Surface from Space), Viktorov, L.M. and Mitnik, L.M., Leningrad: Gidrometeoizdat, 1982.Google Scholar
  17. 17.
    Sikora, T.D., Young, G.S., Beal, R.C., et al., Applications of synthetic aperture radar in marine meteorology, WIT Trans. State Art Sci. Eng., 2006, vol. 23, pp. 83–113.CrossRefGoogle Scholar
  18. 18.
    Yarovaya, D.A., Intense mesoscale vortices in the Black Sea region, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 8, pp. 535–543.CrossRefGoogle Scholar
  19. 19.
    Yarovaya, D.A. and Efimov, V.V., Mesoscale cyclones over the Black Sea, Russ. Meteorol. Hydrol., 2014, vol. 39, no. 6, pp. 378–386.CrossRefGoogle Scholar
  20. 20.
    Yarovaya, D.A. and Shokurov, M.V., Mesoscale cyclonic vortices arising over the Black Sea near the Caucasus coast], Morsk. Gidrofiz. Zh., 2012, no. 3, pp. 14–30.Google Scholar
  21. 21.
    Young, G.S., Sikora, T.D., and Winstead, N.S., Use of synthetic aperture radar in fine-scale analysis of synoptic-scale fronts at sea, Weather Forecasting, 2005, vol. 20, pp. 311–327.CrossRefGoogle Scholar
  22. 22.
    Zabolotskikh, E.V., Bobylev, L.P., Dikinis, A.V., et al., Specific features of the formation and classification of storm mesoscale vortices, Uch. Zap. RGGMU, 2010a, no. 16, pp. 60–76.Google Scholar
  23. 23.
    Zabolotskikh, E.V., Mitnik, L.M., and Bobylev, L.P., Comparative assessment of existing and promising research methods for monitoring and forecasting of mesoscale vortices, including polar cyclones, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2010b, vol. 7, no. 3, pp. 23–29.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations