Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 1102–1109 | Cite as

Experience of Studying the Vertical Structure of an Urban Heat Island Based on Satellite Data

  • I. A. Gorlach
  • A. V. Kislov
  • L. I. AlekseevaEmail author


The structure of an urban heat island in the large industrial centers of the European part of Russia is studied based on the MetOp-A and MetOp-B satellite data. The intensity of the heat island is characterized by the different temperature and specific humidity between the urban area and the surrounding territory. It is shown that this analysis can be used only for large megalopolises like Moscow due to the limited horizontal resolution of the satellite data. The satellite data are grouped in time intervals of 19:30–23:30 and 10:00–13:00 UTC, called “evening” and “before noon” intervals, respectively. In the summer, Moscow’s heat island extends to ~1500 m. In the winter, the vertical extent of the heat island is ~1000 m before noon, and in the evening the heat island is recorded only in the lowest part of the profile. During the summer, the heat island is accompanied by an urban dry island that extends for a height of ~1000 m. Specific humidity increases above these heights as a rule. In the winter, a wet island is most pronounced above the surface.


satellite soundings interferometer heat island dry island humidity island 



This work was supported by the Russian Geographic Society (grant no. 12/2014/RGO-RFFI) as part of the State Budget Theme AAAA-A16-116032810086-4.


  1. 1.
    Aires, F., Rossow, W.B., Scott, N.A., and Chédin, A., Remote sensing from the infrared atmospheric sounding interferometer instrument. 2. Simultaneous retrieval of temperature, water vapor and ozone atmospheric profiles, J. Geophys. Res., 2002, vol. 107, no. D22, pp. 4620–4631.CrossRefGoogle Scholar
  2. 2.
    Alekseeva, L.I. and Myagkov, M.S., Heat imbalance of the active surface in Moscow under the influence of anthropogenic factors, Ustoich. Razvit. Nauka Prakt., 2004, no. 3, pp. 41–50.Google Scholar
  3. 3.
    Bornstein, R.D., Observations of the urban heat island effect in New York City, J. Appl. Meteorol., 1968, vol. 7, pp. 575–582.CrossRefGoogle Scholar
  4. 4.
    Chandler, T.J., The Climate of London, London: Hutchinson, 1965.Google Scholar
  5. 5.
    Duckworth, F.S. and Sandberg, J.S., The effect of cities upon horizontal and vertical temperature gradients, Bull. Amer. Meteor. Soc, 1954, vol. 35, no. 5, pp. 198–207.CrossRefGoogle Scholar
  6. 6.
    Gorod, arkhitektura, chelovek i klimat (City, Architecture, Man, and Climate), Myagkov, M.S., Ed., Moscow: Arkhitektura-S, 2007.Google Scholar
  7. 7.
    IASI Level 2: Product Guide, EUMETSAT, EUM/ OPSEPS/MAN/04/0033, v3B. 15 October, 2014.Google Scholar
  8. 8.
    IASI L2 PPF v6: Validation Report, EUMETSAT, EUM/TSS/REP/14/776443, v4C. 13 October, 2014.Google Scholar
  9. 9.
    Kadygrov, E.N., Kuznetsova, I.N., and Golitsyn, G.S., Heat island in the boundary atmospheric layer over a large city: New results based on remote sensing data, Dokl. Earth Sci., 2002, vol. 385, no. 6, pp. 688–694.Google Scholar
  10. 10.
    Kislov, A.V. and Konstantinov, P.I., Detailed spatial modeling of temperature in Moscow, Russ. Meteorol. Hydrol., 2011, vol. 36, no. 5, pp. 300–306.CrossRefGoogle Scholar
  11. 11.
    Kolokutin, G.E. and Fomin, B.A., New spectroscopic databases and remote sensing of the Earth using high-resolution IR spectroscopy, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 3, pp. 278–287.Google Scholar
  12. 12.
    Kurbatskaya, L.I. and Kurbatsky, A.F., Mesoscale numerical model of urban heat island in a stably stratified environment, Interekspo GEO-Siber’, 2015, vol. 4, no. 1, pp. 165–169.Google Scholar
  13. 13.
    Kuttler, W., Weber, S., Schonnefeld, J., and Hesselschwerdt, A., Urban/rural atmospheric water vapour pressure differences and urban moisture excess in Krefeld, Germany, Int. J. Clim., 2007, vol. 27, pp. 2005–2015.CrossRefGoogle Scholar
  14. 14.
    Kuznetsova, I.N. and Nakhaev, M.I., Seasonal features of the thermal structure of lower atmospheric layers in the Moscow megapolis according to microwave measurements of temperature, in 80 let Gidromettsentru Rossii (The 80th Anniversary of the Hydrometeorological Center of Russia), Vilfand, R.M., Ed., Moscow, 2010, pp. 389–400.Google Scholar
  15. 15.
    Landsberg, H.E., Klimat goroda (The Urban Climate), Leningrad: Gidrometeoizdat, 1983.Google Scholar
  16. 16.
    Lokoshchenko, M.A., Korneva, I.A., Kochin, A.V., Dubovetsky, A.Z., Novitsky, M.A., and Razin, P.E., Vertical extension of the urban heat island above Moscow, Dokl. Earth Sci., 2016, vol. 466, no. 1, pp. 70–74.CrossRefGoogle Scholar
  17. 17.
    Martilli, A., Clappier, A. and Rotach, M.W., An urban surface exchange parameterization for mesoscale models, Boundary-Layer Meteorol., 2002, vol. 104, pp. 261–304.CrossRefGoogle Scholar
  18. 18.
    Oke, T.R., Boundary Layer Climates, London: Routledge, 1987; Leningrad: Gidrometeoizdat, 1982.Google Scholar
  19. 19.
    Scherbakov, A.Yu., Meteorologicheskii rezhim i zagryaznenie atmosfery gorodov (The Meteorological Regime and Urban Air Pollution), Kalinin: KGU, 1987.Google Scholar
  20. 20.
    Uspensky, A.B. and Rublev, A.N., The current state and prospects of satellite hyperspectral atmospheric sounding, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 892–903.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Gorlach
    • 1
    • 2
  • A. V. Kislov
    • 1
  • L. I. Alekseeva
    • 1
    Email author
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Hydrometeorological Center of RussiaMoscowRussia

Personalised recommendations