Izvestiya, Atmospheric and Oceanic Physics

, Volume 54, Issue 9, pp 986–996 | Cite as

Large-Scale Smoke Haze over the European Part of Russia and Belorus in July 2016

  • G. I. GorchakovEmail author
  • S. A. Sitnov
  • E. G. Semoutnikova
  • V. M. Kopeikin
  • A. V. Karpov
  • I. A. Gorchakova
  • N. V. Pankratova
  • T. Ya. Ponomareva
  • G. A. Kuznetsov
  • O. V. Loskutova
  • E. A. Kozlovtseva
  • K. V. Rodina


The smoke haze over the European part of Russia (EPR) and Belorus in July 2016 has been studied with the use of aerosol optical thickness (AOT) data measured by MODIS satellite spectrometers. The AOT maximum on the territory limited by coordinates 45°–70° N and 20°–60° E reached 2.95 on July 24, 2016 with an average regional value of 0.48. The total mass of smoke aerosol without the area covered by clouds was 0.73 million tons. Analysis of the wind fields and five-day back trajectories of air mass movement showed that the smoke was transported by the northeast winds to the EPR and Belorus from western Siberia, including the Yamalo-Nenets Autonomous District, which was characterized by large forest fires from July 17 to 23. Simulation of the radiation regime of the smoky atmosphere indicated that the average radiative forcings of smoke aerosol at upper and lower boundaries of the atmosphere for the above-mentioned territory are –29 and –54 W/m2, respectively (the extreme values are –124 and –154 W/m2, respectively). A comparative analysis of the smoke haze characteristics over the EPR in July 2016 and in summer 2010 has been conducted. According to ground-based measurement data, the mass concentration of PM10 during the smoke period from July 24 to 27 in the Moscow region reached 0.25 mg/m3.


smoke aerosol long-range transport aerosol optical thickness radiative forcing smoke mass aerosol mass concentration MODIS AERONET 



The authors are grateful to the MODIS team for providing us with satellite data. They are personally grateful to B. Holben, A.P. Chaikovskii, M.V. Panchenko, S.M. Sakerin, M.A. Sviridenkov, and N.E. Chubarova for providing us with AERONET data, to Mosecomonitoring (Budgetary Environmental Protection Institution) for providing us with environmental monitoring data on the Moscow region, and to the reviewer for helpful comments. This study was supported by the Russian Science Foundation, project no. 14-47-00049, and the Russian Foundation for Basic Research, project no. 15-05-07853 (analysis of MODIS and AERONET data).


  1. 1.
    Acker, J.C. and Leptoukh, G., Online analysis enhances use of NASA Earth Science Data, EOS, Trans. Am. Geophys. Union, 2007, vol. 88, pp. 14–17. doi 10.1029/2007EO020003CrossRefGoogle Scholar
  2. 2.
    Belousov, S.L. and Pagava, T.S., Calculation of air particle trajectories, in Otraslevoy fond algoritmov i programm “Gidrometeosluzhba” (Industrial Database of Algorithms and Programs “Gidrometeosluzhba”), 1998, no. 2572448.00150-0113.Google Scholar
  3. 3.
    Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048.CrossRefGoogle Scholar
  4. 4.
    Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091.CrossRefGoogle Scholar
  5. 5.
    Bondur, V.G. and Ginzburg, A.S., Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring, Dokl. Earth Sci., 2016, vol. 466, no. 2, pp. 148–152.CrossRefGoogle Scholar
  6. 6.
    Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in northern Eurasia according to satellite-monitoring data, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 859–874.CrossRefGoogle Scholar
  7. 7.
    Chubarova, N.E., Gorbarenko, E.V., Nezval’, E.I., and Shilovtseva, O.A., Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002, and 2010 in the region of Moscow, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 729–738.CrossRefGoogle Scholar
  8. 8.
    Chubarova, N., Nezval’, E., Sviridenkov, M., Smirnov, A., and Slutsker, I., Smoke aerosol and its radiative effects during extreme fire event over central Russia in summer 2010, Atmos. Meas. Tech., 2012, vol. 5, pp. 557–568.CrossRefGoogle Scholar
  9. 9.
    Dubovik, O. and King, M.D., A flexible inversion algorithm for the retrieval of aerosol optical properties from Sun and Sky radiance measurements, J. Geophys. Res., 2000, vol. 105, no. D16, pp. 20673–20696.CrossRefGoogle Scholar
  10. 10.
    Eck, T.F., Holben, B.N., Reid, J.S., Sinyuk, A., Hyer, E.J., Neil, N.T., Shaw, G.E., Vande, Castle, J.R., Chapin, F.S., Dubovick, O., Smirnov, A.V., Vermote, E., Schafer, J.S., Giles, D., Slutsker, I., Sonokine, M., and Newcomb, W.W., Optical properties of boreal region biomass burning aerosols in Central Alaska and seasonal variation of aerosol optical depth at an arctic coastal site, J. Geophys. Res., 2009, vol. 114, D11201.CrossRefGoogle Scholar
  11. 11.
    Giglio, L., Descloitres, J., Justice, C.O., and Kaufman, Y.J., An enhanced contextual fire detection algorithm for MODIS, Remote Sens. Environ., 2003, vol. 87, pp. 273–282. doi 10.1016/S0034-4257(03)00184-6CrossRefGoogle Scholar
  12. 12.
    Gigienicheskie normativy GN Dop. no. 8 k GN (Hygienic Standards GN Addendum no. 8 to GN, Maximum Allowable Concentrations of Pollutants in the Air of Residential Areas), Moscow: Federal Service for Consumer Rights Protection and Human Well-Being, 2010. print/.Google Scholar
  13. 13.
    Gorchakova, I.A. and Mokhov, I.I., The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 5, pp. 496–503.CrossRefGoogle Scholar
  14. 14.
    Gorchakov, G.I., Emilenko, A.S., and Sviridenkov, M.A., Single-parametric model of surface aerosol, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1981, vol. 17, no. 1, pp. 39–49.Google Scholar
  15. 15.
    Gorchakov, G.I., Anikin, P.P., Volokh, A.A., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Ponomareva, T.Ya., Semutnikova, E.G., Sviridenkov, M.A., and Shukurov, K.A., Study of the composition of the atmospheric smoke screen over the Moscow region, Dokl. Earth Sci., 2003, vol. 390, no. 4, pp. 562–565.Google Scholar
  16. 16.
    Gorchakov G.I., Anikin P.P., Volokh A.A., Emilenko A.S., Isakov A.A., Kopeikin V.M., Ponomareva T.Ya., Semutnikova E.G., Sviridenkov M.A., Shukurov K.A. Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer–fall season of 2002, Izv., Atmos. Ocean. Phys., 2004, vol. 40, no. 3, pp. 323–336.Google Scholar
  17. 17.
    Gorchakov, G.I., Sviridenkov, M.A., Semutnikova, E.G., Chubarova, N.E., Holben, B.N., Smirnov, A.V., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Lezina, E.A., and Zadorozhnaya, O.S., Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010, Dokl. Earth Sci., 2011a, vol. 437, no. 2, pp. 513–517.CrossRefGoogle Scholar
  18. 18.
    Gorchakov, G.I., Semutnikova, E.G., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Kurbatov, G.A., Ponomareva, T.Ya., and Sokolov, A.V., The Moscow smoke haze of 2010: Extreme aerosol and gaseous air pollution of in the Moscow region, Opt. Atmos. Okeana, 2011b, vol. 24, no. 6, pp. 452–458.CrossRefGoogle Scholar
  19. 19.
    Gorchakov, G., Semoutnikova, E., Karpov, A., and Lezina, E., Air pollution in Moscow megacity, in Advanced Topics in Environmental Health and Air Pollution: Case Studies, Rijeka: Intech, 2011c.Google Scholar
  20. 20.
    Gorchakov, G.I., Kadygrov, E.N., Kunitsyn, V.E., Zakharov, V.I., Semutnikova, E.G., Karpov, A.V., Kurbatov, G.A., Miller, E.A., and Sitanskii, S.I., The Moscow heat island in the blocking anticyclone during summer 2010, Dokl. Earth Sci., 2014a, vol. 456, no. 2, pp. 736–740.CrossRefGoogle Scholar
  21. 21.
    Gorchakov, G.I., Sitnov, S.A., Sviridenkov, M.A., Semoutnikova, E.G., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Gorchkova, I.A., Verichev, K.S., Kurbatov, G.A., and Ponomareva, T.Ya., Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012, Int. J. Remote Sens., 2014b, vol. 35, pp. 5698–5721.Google Scholar
  22. 22.
    Gorchakov, G.I., Vasiliev, A.V., Verichev, K.S., Semutnikova, E.G., and Karpov, A.V., Finely dispersed brown carbon in a smoggy atmosphere, Dokl. Earth Sci., 2016a, vol. 471, no. 1, pp. 1158–1163.CrossRefGoogle Scholar
  23. 23.
    Gorchakov, G.I., Sitnov, S.A., Semutnikova, E.G., Kopeykin, V.M., Karpov, A.V., Isakov, A.A., Gorchakova, I.A., Pankratova, N.V., Ponomareva, T.Ya., Kuznetsov, G.A., Loskutova, O.V., Kozlovtseva, E.A., and Rodina, K.V., large-scale smoke haze in European Russia and Belorus in July 2016, in Aerozoli Sibiri. Tez. Dokl. XXIII Rab. gruppy (Aerosols of Siberia: Abstracts of the XXIII Work Group), Tomsk: IOA SO RAN, 2016b, p. 57.Google Scholar
  24. 24.
    Gorchakov, G.I., Kopeykin, V.M., Sitnov, S.A., Semutnikova, E.G., Sviridenkov, M.A., Karpov, A.V., Le-zina, E.A., Emilenko, A.S., Isakov, A.A., Kuznetsov, G.A., and Ponomareva, T.Ya., Moscow smoke haze in October 2014. Variations in the aerosol mass concentration, Atmos. Oceanic Opt., 2016c, vol. 29, no. 1, pp. 5–11.CrossRefGoogle Scholar
  25. 25.
    Gorchakov, G.I., Karpov, A.V., Pankratova, N.V., and Semoutnikova, E.G., Vasiliev, A.V., and Gorchakova, I.A., Brown carbon and black carbon in the smoky atmosphere during boreal forest fires, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 875–884.CrossRefGoogle Scholar
  26. 26.
    Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, N., Lavenu, F., Jankowiak, I., and Smirnov, A., AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 1998, vol. 66, pp. 1–16.CrossRefGoogle Scholar
  27. 27.
    Isakov, A.A., Spectropolarimetric and nephelometric studies of surface aerosol induced by the Moscow region forest and turf fires of 2002, Izv., Atmos. Ocean. Phys., 2003, vol. 39, no. 6, pp. 714–721.Google Scholar
  28. 28.
    Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morrisette, J.T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y., The MODIS fire products, Remote Sens. Environ., 2002, vol. 83, pp. 244–262.CrossRefGoogle Scholar
  29. 29.
    Kaufman, Y.J., Tanre, D., Gordon, H.R., Vermote, E.F., Chu, A., and Holben, B.N., Operational remote sensing of aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 1997, vol. 102, no. D14, pp. 17051–17067.CrossRefGoogle Scholar
  30. 30.
    Kozlov, V.S., Yausheva, E.P., Terpugova, S.A., Panchenko, M.V., Chertnov, D.G., and Shmargunov, V.P., Optical–microphysical properties of smoke haze from Siberian forest fires in summer 2012, Int. J. Remote Sens., 2014, vol. 35, no. 15, pp. 5722–5741.Google Scholar
  31. 31.
    Kuznetsova, I.N., Zvyagintsev, A.M., and Semutnikova, E.G., Ekologicheskie posledstviya pogodnykh anomaliy letom 2010 goda. Analiz uslovii anomal’noi pogody na territorii Rossii letom 2010 goda (Environmental Consequences of Weather Anomalies in the Summer of 2010. Analysis of Anomalous Weather Conditions in Russia in the Summer of 2010), Moscow: Triada, 2010, pp. 58–64.Google Scholar
  32. 32.
    Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., and Kaufman, Y.J., Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance, J. Geophys. Res., 2007, vol. 112, D13211. doi 10.1029/2006JD007811CrossRefGoogle Scholar
  33. 33.
    Malinin, V.N., Statisticheskie metody analiza gidrometeorologicheskoi informatsii (Statistical Methods for Hydrometeorological Data Analysis), St. Petersburg: RGGMU, 2008.Google Scholar
  34. 34.
    Mokhov, I.I., Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 653–660.CrossRefGoogle Scholar
  35. 35.
    Mokhov, I.I. and Gorchakova, I.A., Radiation and temperature effects of summer fires in 2002 in the Moscow region, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 160–163.Google Scholar
  36. 36.
    Monitoring Ambient Air Quality for Health Impact Assessment, Copenhagen: WHO Regional Office for Europe, 2001.Google Scholar
  37. 37.
    Panchenko, M.V., Zhuravleva, T.B., Kozlov, V.S., and Nasrtdinov, I.M., Pol’kin, V.V., Terpugova, S.A., and Chernov, D.G., Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 2, pp. 104–111.CrossRefGoogle Scholar
  38. 38.
    Remer, L.A., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.-R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and Holben, B.N., The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 2005, vol. 62, pp. 947–973.CrossRefGoogle Scholar
  39. 39.
    Salomonson, V.V., Barnes, W.L., Maymon, P.W., Montgomery, H.E., and Ostrow, H., MODIS, advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geosci. Remote Sens., 1989, vol. 27, pp. 145–153.CrossRefGoogle Scholar
  40. 40.
    Shakina, N.P., Ivanova, A.R., Birman, B.A., and Skriptunova, E.N., Blokirovanie: usloviya leta 2010 goda v kontekste sovremennykh znanii. Analiz uslovii anomal’noi pogody na territorii Rossii letom 2010 goda (Blocking: Conditions of the Year 2010 in the Context of Modern Knowledge. Analysis of Conditions of the Anomalous Weather in Russia in the Summer of 2010), Moscow: Triada, 2010, pp. 6–21.Google Scholar
  41. 41.
    Sitnov, S.A., Analysis of satellite observations of aerosol optical properties and gaseous species over Central District of Russian Federation in the period of abnormally high summer temperature and mass wild fires in 2010, Opt. Atmos. Okeana, 2011a, vol. 24, no. 7, pp. 572–581.CrossRefGoogle Scholar
  42. 42.
    Sitnov, S.A., Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass Fires: Interrelation between the variation in pollutants and meteorological parameters, Izv., Atmos. Ocean. Phys., 2011b, vol. 47, no. 6, pp. 714–728.CrossRefGoogle Scholar
  43. 43.
    Sitnov, S.A., Satellite monitoring of atmospheric gaseous species and optical characteristics of atmospheric aerosol over the European part of Russia in April–September 2010, Dokl. Earth Sci., 2011c, vol. 437, no. 1, pp. 368–373.CrossRefGoogle Scholar
  44. 44.
    Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., and Karpov, A.V., Evolution and radiation effects of the extreme smoke pollution over the European part of Russia in the summer of 2010, Dokl. Earth Sci., 2012, vol. 446, no. 2, pp. 1197–1203.CrossRefGoogle Scholar
  45. 45.
    Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., Kopeikin, V.M., Ponomareva, T.Ya., and Karpov, A.V., The effect of atmospheric circulation on the evolution and radiative forcing of smoke aerosol over European Russia during the summer of 2010, Izv., Atmos. Ocean. Phys., 2013a, vol. 49, no. 9, pp. 1006–1018.CrossRefGoogle Scholar
  46. 46.
    Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., Gorchakova, I.A., Karpov, A.V., and Kolesnikova, A.B., Aerospace monitoring of smoke aerosol over the European part of Russia in the period of massive forest and peatbog fires in July–August of 2010, Atmos. Oceanic Opt., 2013b, vol. 26, no. 4, pp. 265–280.CrossRefGoogle Scholar
  47. 47.
    Sitnov, S.A., Mokhov, I.I., and Gorchakov, G.I., The link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of large-scale atmospheric circulation, Dokl. Earth Sci., 2017, vol. 472, no. 2, pp. 190–195.CrossRefGoogle Scholar
  48. 48.
    Sklyadneva, T.K., Ivlev, G.A., Belan, B.D., Arshinov, M.Yu., and Simonenkov, D.V., The radiation regime of Tomsk in conditions of a smoky haze, Opt. Atmos. Okeana, 2015, vol. 28, no. 3, pp. 215–222.Google Scholar
  49. 49.
    Smirnov, N.V. and Dunin-Barkovskii, I.V., Kratkii kurs matematicheskoi statistiki dlya tekhnicheskikh prilozhenii (A Short Course of Mathematical Statistics for Technical Applications), Moscow: Fizmatgiz, 1959.Google Scholar
  50. 50.
    Van Donkelaar, A., Martin, R.V., Levy, R.C., da Silva, M.A., Krzyzanowski, M., Chubarova, N.E., Semutnikova, E.G., and Cohen, A.J., Satellite-based estimates of ground-level fine particle matter during extreme events: A case study of the Moscow fires in 2010, Atmos. Environ., 2011, vol. 45, pp. 6225–6232.CrossRefGoogle Scholar
  51. 51.
    Yausheva, E.P., Kozlov, V.S., Panchenko, M.V., and Shmargunov, V.P., Impact of forest fire smokes on the optical–microphysical characteristics of submicron aerosol and soot in the Tomsk region in summer 2016, in Aerozoli Sibiri. Tez. Dokl. XXIII Rab. gruppy (Aerosols of Siberia: Abstracts of the XXIII Work Group), Tomsk: IOA SO RAN, 2016, p. 9.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. I. Gorchakov
    • 1
    Email author
  • S. A. Sitnov
    • 1
  • E. G. Semoutnikova
    • 2
  • V. M. Kopeikin
    • 1
  • A. V. Karpov
    • 1
  • I. A. Gorchakova
    • 1
  • N. V. Pankratova
    • 1
  • T. Ya. Ponomareva
    • 3
  • G. A. Kuznetsov
    • 1
  • O. V. Loskutova
    • 4
  • E. A. Kozlovtseva
    • 2
  • K. V. Rodina
    • 2
  1. 1.A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Physics, Moscow State UniversityMoscowRussia
  3. 3.Hydrometeorological Center of RussiaMoscowRussia
  4. 4.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations