Skip to main content
Log in

The Use of NDVI in Digital Mapping of the Content of Available Lithium in the Arable Horizon of Soils in Southwestern Siberia

  • USE OF SPACE INFORMATION ABOUT THE EARTH
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We have determined the informational value of the Normalized Difference Vegetation Index (NDVI) for predictive mapping of the content of available lithium in the arable horizon of soils of different slope positions: the first (280–310 m) and the second (240–280 m) altitudinal levels. The NDVI is not informative for the diagnostics or mapping of the content of available lithium in soils of small drainage valleys, the width of which is smaller than the resolution of the satellite image (30 m). In the regression model, the NDVI explains 28% of the variation in the content of available lithium in soils. Based on this model, a predictive map of the content of available lithium in soils has been compiled. Data on the spatial distribution pattern of the NDVI calculated based on a Landsat 8 satellite image (resolution of 30 m) were used as an indicator and the cartographical basis for digital mapping. The accuracy of the prediction of the content of available lithium in soils is good (MAPE is 16.9%). It has been revealed that the NDVI values and the content of available lithium in soils of the first altitudinal level are higher than in the second. The differences between NDVI in the drainage valley and on the first altitudinal level are not insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Afanas’ev, V.N. and Tsypin, A.P., Ekonometrika v pakete STATISTICA: uchebnoe posobie po vypolneniyu lanoratornykh rabot (Econometrics in the STATISTICA Package: A Textbook for Laboratory Works), Orenburg: GOU OGU, 2008.

  2. Akhmetov, R.M., Lithium in the geotechnosphere of the Southern Urals, Geol. Sb., 2009, no. 8, pp. 248–252.

  3. Avtsyn, A.P., Zhavoronkov, A.A., Rish, M.A., and Strochkova, A.S., Mikroelementozy cheloveka: etiologiya, klassifikatsiya, organopatologiya (Human Microelementoses: Etiology, Classification, and Organopathology), Moscow: Meditsina, 1991.

  4. Blagoveschenskii, Yu.N., Tainy korrelyatsionnykh svyazei v statistike (Secrets of Correlations in Statistics), Moscow: Nauchnaya kniga, 2009.

  5. Draper, N. and Smith, H., Applied Regression Analysis, New York: Wiley, 1981; Moscow: Finansy i statistika, 1986.

  6. Ekonometrika. Metodicheskie ukazaniya po izucheniyu distsipliny i vypolneniyu kontrol’noy i auditornoy raboty na PEVM (Econometrics. Methodical Instructions for Learning and Test Works on the PC), Moscow: Vuzovskiy uchebnik, 2005.

  7. Evdokimova, T.I., Pochvennaya s”yemka (Soil Survey), Moscow: MGU, 1987.

    Google Scholar 

  8. Gopp, N.V., Algorithmic approach to compiling digital soil maps from laboratory–field and satellite data, Issled. Zemli Kosmosa, 2013, no. 3, pp. 58–72.

  9. Gopp, N.V., Soils of the southwestern part of the Dzhulukul depression in the Altai Republic, Eurasian Soil Sci., 2015, vol. 48, no. 6, pp. 567–577.

    Article  Google Scholar 

  10. Huete, A.R. and Liu, H.Q., An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS, IEEE Trans. Geosci. Remote Sens., 1994, no. 32, pp. 897–905.

  11. Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), vol. 1: s-elements (s-Elements), Moscow: Nedra, 1994.

  12. Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, London: CRC,; Moscow: Mir, 1989.

  13. Kedrinskii, I.A. and Yakovlev, V.G., Li-ionnye akkumulyatory [Li-Ion Batteries), Krasnoyarsk: Platina, 2002. Khimicheskii entsiklopedicheskii slovar’ (Encyclopedic Dictionary of Chemistry), Knunyants, I.L., Ed., Moscow: Sov. entsiklopediya, 1983.

  14. Klassifikatsiya i diagnostika pochv Rossii (Classification and Diagnostics of Soils in Russia), Smolensk: Oikumena, 2004.

  15. Kumar, P., Pandey, P.C., Singh, B.K., Katiyar, S., Mandal, V.P., Rani, M., Tomarf, V., and Patairiya, S., Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy, Egypt. J. Remote Sens. Space Sci., 2016, vol. 19, pp. 109–123.

    Google Scholar 

  16. Mashkovskiy, M.D., Lekarstvennye sredstva (Medicines), Moscow: Novaya volna, 2005.

  17. McKenzie, N.J. and Ryan, P.J., Spatial prediction of soil properties using environmental correlation, Geoderma, 1999, vol. 89, pp. 67–94.

    Article  Google Scholar 

  18. Michael, A., Anderson, Paul, M., Bertsch, P., et al., Exchange and apparent fixation of lithium in selected soils and clay minerals, Soil Sci., 1989, vol. 148, no. 1, pp. 46–51.

    Article  Google Scholar 

  19. Orlov, A.D., Eroziya i erozionnoopasnye zemli Zapadnoi Sibiri (Erosion and Erosion-Hazardous Lands of Western Siberia), Novosibirsk: Nauka, 1983.

  20. Perel’man, A.I. and Kasimov, N.S., Geokhimiya landshafta (Geochemistry of the Landscape), Moscow: Astreya-2000, 1999.

  21. Polevoi opredelitel’ pochv Rossii (Field Identifier of Soils in Russia), Moscow: Pochv. inst. im. V. V. Dokuchayeva, 2008.

  22. Poluektov, N.S., Meshkova, S.B., and Poluektova, E.N., Analiticheskaya khimiya litiya (Analytical Chemistry of Lithium), Moscow: Nauka, 1975.

  23. Rivero, R.G., Grunwald, S., Newman, S., Osborne, T.Z., and Reddy, K.R., Incorporation of ASTER satellite imagery into multivariate geostatistical models to predict soil phosphorus, in Biannual Meeting of Commission 1.5 Pedometrics Division 1 Int. Union of Soil Sci., Naples, Florida, USA: IUSS, 2005, pp. 75–76.

    Google Scholar 

  24. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W., Monitoring vegetation systems in the Great Plains with ERTS, in Third ERTS Symposium NASA SP-351, 1993, pp. 309–317.

  25. Rusanov, A.K., Osnovy kolichestvennogo spektral’nogo analiza rud i mineralov (Fundamentals of Quantitative Spectral Analysis of Ores and Minerals), Moscow: Nedra, 1978.

  26. Zvonkova, T.V., Prikladnaya geomorfologiya (Applied geomorphology), Moscow: Vysshaya Shkola, 1970.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gopp.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopp, N.V., Savenkov, O.A., Nechaeva, T.V. et al. The Use of NDVI in Digital Mapping of the Content of Available Lithium in the Arable Horizon of Soils in Southwestern Siberia. Izv. Atmos. Ocean. Phys. 54, 1152–1157 (2018). https://doi.org/10.1134/S0001433818090165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818090165

Keywords:

Navigation