Skip to main content
Log in

Investigation into Variations of Wind Directions Near the Surface

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of a full-scale experiment carried out at the Obukhov Institute of Atmospheric Physics testing ground in Tsimlyansk in 2015 are described. The experiment included multipoint measurements of wind variations using 12 vanes arranged in a line across (and in some cases lengthwise) the wind directions. The correlation functions were used to calculate longitudinal and transversal correlation radii, which characterized, accordingly, the longitudinal and transversal dimensions of vortices in the airflow. The longitudinal radius was 1.8 times the transversal radius. The correlation radius dependence on the scale of Obukhov–Monin surface layer was obtained. The maxima of transversal correlation radius (about 20 m) were observed at daytime with great instability. At night they were a few times lower. Wind pulsation spectra depend on the thermal stratification and the mean wind velocity. The technique proposed in the paper allows studying the spatial structure of the direction field of the surface wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. S. Monin and A. M. Obukhov, “Dimensionless characteristics of turbulence in the atmospheric surface layer,” Dokl. Akad. Nauk SSSR 93 (2), 223–226 (1953).

    Google Scholar 

  2. M. Calaf, M. Hultmark, H. J. Oldroyd, and V. Simeonov, “Coherent structures and K-1 spectral behavior,” Phys. Fluids 25, 125107 (2013).

    Article  Google Scholar 

  3. R. A. Antonia, A. J. Chambers, C. A. Friehe, and C. W. Van-Atta, “Temperature ramps in the atmospheric surface layer,” J. Atmos. Science 36 (1), 99–108 (1979).

    Article  Google Scholar 

  4. M. A. Carper and F. Porté-Agel, “The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer,” J. Turbul. 5 (1), 040 (2004).

  5. S. L. Zubkovsky and M. M. Fedorov, “Experimental determination of the spatial correlation function of the wind velocity field in the atmospheric surface layer,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 22 (9), 909–916 (1986).

    Google Scholar 

  6. B. M. Koprov and D. Yu. Sokolov, “Spatial correlation functions of wind velocity components and temperature in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 9 (2), 178–182 (1973).

    Google Scholar 

  7. B. A. Kader, A. M. Yaglom, and S. L. Zubkovsky, “Spatial correlation functions of surface-layer atmospheric turbulence in neutral stratification,” Bound.-Layer Meteorol. 47 (1), P. 233–249 (1989).

    Article  Google Scholar 

  8. M. Metzger, B. J. McKeon, and H. Holmes, “The near-neutral atmospheric surface layer: Turbulence and non-stationarity,” Phil. Trans. R. Soc. A 365, 859–876 (2007).

    Article  Google Scholar 

  9. B. M. Koprov, V. M. Koprov, T. I. Makarova, and G. S. Golitsyn, “Coherent structures in the atmospheric surface layer under stable and unstable conditions,” Bound.-Layer Meteorol. 111, 19–32 (2004).

    Article  Google Scholar 

  10. E. A. Shishov, B. M. Koprov, and V. M. Koprov, “Statistical parameters of the spatiotemporal variability of the wind direction in the surface layer,” Izv., Atmos. Ocean. Phys. 53 (1), 19–23 (2017).

    Article  Google Scholar 

  11. S. I. Krechmer, “On the issue of wind direction variability,” Tr. Geofiz. Inst. Akad. Nauk. SSSR, No. 33, 48–59 (1956).

    Google Scholar 

  12. N. Z. Ariel’, “Some results from observations of temperature and wind direction pulsations,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 107, 60–65 (1961).

    Google Scholar 

  13. L. Mahrt, “Surface wind direction variability,” J. Appl. Meteorol. Climatol. 50, P. 144–152 (2011).

    Article  Google Scholar 

  14. E. Doorn, B. Dhruva, K. R. Sreenivasan, and V. Cassella, “Statistics of wind direction and its increments,” Phys. Fluids 12 (6), 1529–1534 (2000).

    Article  Google Scholar 

  15. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv., Atmos. Ocean. Phys. 51 (6), 565–575 (2015).

    Article  Google Scholar 

  16. B. M. Koprov, V. M. Koprov, O. G. Chkhetiani, O. A. Solenaya, and E. A. Shishov, “Technique and results of measurements of turbulent helicity in a stratified surface layer,” Izv., Atmos. Ocean. Phys. 54 (5), 446–455 (2018).

    Article  Google Scholar 

  17. M. V. Kurgansky, A. Montecinus, V. Villagran, and S. M. Metzger, “Micro-meteorological conditions for dust-devil occurrence in the Atacama Desert,” Bound.-Layer Meteorol. 138, 285–298 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 14-27-00134-b, and the Russian Foundation for Basic Research, project no. 17-05-01116-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Shishov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishov, E.A., Solyonaya, O.A., Koprov, B.M. et al. Investigation into Variations of Wind Directions Near the Surface. Izv. Atmos. Ocean. Phys. 54, 515–523 (2018). https://doi.org/10.1134/S0001433818060129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060129

Keywords:

Navigation