Skip to main content
Log in

Regional Photochemical Surface-Ozone Sources in Europe and Western Siberia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The influence of climatically significant regional sources of NOx (=NO + NO2), CO, and biogenic volatile organic compounds (VOCs) on the photochemical generation of surface ozone (O3) in the lower troposphere over Europe and Siberia is studied. The sensitivity of the O3 field to the total emissions of ozone precursors is calculated using a global 3D chemical transport model (GEOS-Chem) based on the 2007–2012 databases for anthropogenic (EDGAR) and biogenic (MEGAN, GFED) emissions. The amount of photochemical ozone generated during the summer months is in good correlation with the air-mass age determined from the ratio between \({\text{N}}{{{\text{O}}}_{x}}\) and (total reactive nitrogen) \({\text{N}}{{{\text{O}}}_{y}},\) when the mean contribution of regional sources is \({\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}\) ~ 10–15 ppb, which is 20–30% of its background concentration in the middle latitudes (\({{{\text{O}}}_{{\text{3}}}}\) ~ 35–45 ppb). The quantitative estimates of the ozone production efficiency \({{{\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}} \mathord{\left/ {\vphantom {{{\Delta\text{}}{{{\text{O}}}_{{\text{3}}}}} \Delta }} \right. \kern-0em} \Delta }{\text{(N}}{{{\text{O}}}_{y}} - {\text{N}}{{{\text{O}}}_{x}}{\text{)}}\) (\({\text{N}}{{{\text{O}}}_{y}}\) is the total reactive nitrogen) for the summer months of the indicated period (~10–30 mol O3/mol NOx) are in good agreement with the theory of photochemical ozone generation under the conditions of slightly polluted air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. O. Wild and H. Akimoto, “Intercontinental transport of ozone and its precursors in a three-dimensional CTM,” J. Geophys. Res. 106, 27729–27744 (2001).

    Article  Google Scholar 

  2. O. Wild, P. Pochanart, and H. Akimoto, “Trans-Eurasian transport of ozone and its precursors,” J. Geophys. Res. 109, D11302 (2004). doi 10.1029/2003JD004501

    Article  Google Scholar 

  3. A. V. Vivchar, K. B. Moiseenko, R. A. Shumskii, and A. I. Skorokhod, “Identifying anthropogenic sources of nitrogen oxide emissions from calculations of Lagrangian trajectories and the observational data from a tall tower in Siberia during the spring–summer period of 2007,” Izv., Atmos. Ocean. Phys. 45 (3), 302–3313 (2009).

    Article  Google Scholar 

  4. X. Chi, J. Winderlich, J. -C. Mayer, A. V. Panov, M. Heimann, W. Birmili, J. Heintzenberg, Y. Cheng, and M. O. Andreae, “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13, 12271–12298 (2013).

    Article  Google Scholar 

  5. X. Li, J. Liu, D. L. Mauzerall, L. K. Emmons, S. Walters, L. W. Horowitz, and S. Tao, “Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China,” J. Geophys. Res.: Atmos. 119, 12338–12354 (2014). doi 10.1002/ 2014JD021936

    Google Scholar 

  6. J. Liu, J. A. Logan, D. B. A. Jones, N. J. Livesey, I. Megretskaia, C. Carouge, and P. Nedelec, “Analysis of CO in the tropical troposphere using Aura satellite data and the GEOS-Chem model: Insights into transport characteristics of the GEOS meteorological products,” Atmos. Chem. Phys. 10, 12207–12232 (2010).

    Article  Google Scholar 

  7. D. D. Parrish, E. J. Dunlea, E. L. Atlas, S. Schauffler, S. Donnelly, V. Stroud, A. H. Goldstein, D. B. Millet, M. McKay, D. A. Jaffe, H. U. Price, P. G. Hess, F. Flocke, and J. M. Roberts, “Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions,” J. Geophys. Res. 109, D23S18 (2004). doi 10.1029/ 2004JD004978

    Google Scholar 

  8. Q. Li, D. J. Jacob, J. W. Munger, R. M. Yantosca, and D. D. Parrish, “Export of NOy from the North American boundary layer: Reconciling aircraft observations and global model budgets,” J. Geophys. Res. 109 (D2) (2004). doi 10.1029/2003jd004086

  9. A. Stohl, S. Eckhardt, C. Forster, P. James, and N. Spichtinger, “On the pathways and timescales of intercontinental air pollution transport,” J. Geophys. Res. 107 (D23) 4684 (2002). doi 10.1029/2001JD001396

    Google Scholar 

  10. M. Auvray and I. Bey, “Long-range transport to Europe: Seasonal variations and implications for the European ozone budget,” J. Geophys. Res. 110, D11303 (2005). doi 10.1029/2004JD005503

    Article  Google Scholar 

  11. K. E. Christian, W. H. Brune, and J. Mao, “Global sensitivity analysis of the GEOS-Chem chemical transport model: Ozone and hydrogen oxides during ARCTAS (2008),” Atmos. Chem. Phys. Discuss. (2016). doi 10.5194/acp-2016-863

  12. S. Wu, B. N. Duncan, D. J. Jacob, A. M. Fiore, and O. Wild, “Chemical Nonlinearities in Relating Intercontinental Ozone Pollution To Anthropogenic Emissions,” Geophys. Res. Lett. 36, L05806 (2009). doi 10.1029/2008GL036607

    Google Scholar 

  13. P. Pochanart, H. Akimoto, Y. Kajii, V. M. Potemkin, and T. V. Khodzher, “Regional background ozone and carbon monoxide variations in remote Siberia/East Asia,” J. Geophys. Res. 108 (D1), 4028 (2003).

    Article  Google Scholar 

  14. Yu. A. Shtabkin, K. B. Moiseenko, A. I. Skorokhod, A. V. Vasileva, and M. Heimann, “Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino tall tower observatory,” Izv. Atmos. Ocean. Phys. 52 (1), 45–56 (2016).

    Article  Google Scholar 

  15. Yu. A. Shtabkin and K. B. Moiseenko, “Seasonal variations in surface concentrations of CO and ozone in Central Siberia: Observations and numerical simulation,” in Proceedings of the XIV Conference of Young Scientists “Interaction of Fields and Radiation with Matter”, September 14–18, 2015 (Irkutsk, 2016), pp. 352–354.

  16. A. Roiger, H. Schlager, A. Schafler, H. Huntrieser, M. Scheibe, H. Aufmhoff, O. R. Cooper, H. Sodemann, A. Stohl, J. Burkhart, M. Lazzara, C. Schiller, K. S. Law, and F. Arnold, “In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere,” Atmos. Chem. Phys. 11, 10975–10994 (2011). doi 10.5194/acp-11-10975-2011

    Article  Google Scholar 

  17. A. V. Vasileva, K. B. Moiseenko, J.-C. Mayer, N. Jurgens, A. Panov, M. Heimann, and M. O. Andreae, “Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in Central Siberia,” J. Geophys. Res. 116, D07301 (2011). doi 10.1029/2010JD014571

    Article  Google Scholar 

  18. S. Sillman, “The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,” Atmos. Environ. 33 (12), 1821–1845 (1999).

    Article  Google Scholar 

  19. T. Pierce, C. Geron, L. Bender, et al., “Influence of increased isoprene emissions on regional ozone modeling,” J. Geophys. Res. 103, 25611–25629 (1998).

    Article  Google Scholar 

  20. S. Sillman, “Tropospheric ozone and photochemical smog,” in Treatise on Geochemistry, Vol. 9: Environmental Geochemistry (Elsevier, 2003), Chap. 11, pp. 407–431.

  21. S. C. Liu, M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hubler, and P. C. Murphy, “Ozone production in the rural troposphere and the implications for regional and global ozone distributions,” J. Geophys. Res. 92 (D4) 4191–4207 (1987). doi 10.1029/JD092iD04p04191

    Article  Google Scholar 

  22. A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmermann, “A global model of natural volatile organic compound emissions,” J. Geophys. Res. 100, 8873–8892 (1995).

    Article  Google Scholar 

  23. E. V. Berezina, K. B. Moiseenko, A. I. Skorokhod, N. F. Elansky, and I. B. Belikov, “Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia,” Dokl. Earth Sci. 474 (1), 599–603 (2017).

    Article  Google Scholar 

  24. P. S. Monks, “Gas-phase radical chemistry in the troposphere,” Chem. Soc. Rev. 34 (5), 376–395 (2005).

    Article  Google Scholar 

  25. Atmospheric Composition over Northern Eurasia: TROICA Experiments, Ed. by N. F. Elansky (Agrospas, Moscow, 2009) [in Russian].

    Google Scholar 

  26. N. V. Pankratova, N. F. Elansky, I. B. Belikov, O. V. Lavrova,A. I. Skorokhod, and R. A. Shumsky, “Ozone and nitric oxides in the surface air over Northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).

    Article  Google Scholar 

  27. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, D. E. Savkin, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Mezomasshtabnye razlichiya v kontsentratsii ozona v prizemnom sloe vozdukha v Tomskom regione (2010-2012 gg.),” Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova 71, 106–117 (2015).

    Google Scholar 

  28. P. S. Monks, “A review of the observations and origins of the spring ozone maximum,” Atmos. Environ. 34 (21), 3545–3561 (2000).

    Article  Google Scholar 

  29. S. Sillman and D. He, “Some theoretical results concerning O3–NOx–VOC chemistry and NOx–VOC indicators,” J. Geophys. Res. 107 (D22), 4629 (2002). doi 10.1029/2001JD001123

    Article  Google Scholar 

  30. W. P. L. Carter, “Development of ozone reactivity scales for volatile organic compounds,” J. Air Waste Manage. Assoc. 44, 881–899 (1994).

    Article  Google Scholar 

  31. R. Atkinson, “Atmospheric chemistry of VOCs and NOx,” Atmos. Environ. 34, 2063–2101 (2000).

    Article  Google Scholar 

  32. S. Sillman, J. A. Logan, and S. C. Wofsy, “The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes,” J. Geophys. Res. 95, 1837–1851 (1990).

    Article  Google Scholar 

  33. M. Trainer, “Correlation of ozone with NOy in photochemically aged air,” J. Geophys. Res. 98 (D2), 2917–2925 (1993). doi 10.1029/92JD01910

    Article  Google Scholar 

  34. L. I. Kleinman, P. H. Daum, Y. Lee, L. J. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and J. Rudolph, “Ozone production efficiency in an urban area,” J. Geophys. Res. 107 (D23), 4733 (2002).

    Article  Google Scholar 

  35. F. J. Dentener and P. J. Crutzen, “Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH,” J. Geophys. Res. 98, 7149–7163 (1993).

    Article  Google Scholar 

  36. A. von Engeln and J. Teixeira, “A planetary boundary layer height climatology derived from ECMWF reanalysis data,” J. Clim. 26, 6575–6590 (2013).

    Article  Google Scholar 

  37. I. Bey, D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, and M. G. Schultz, “Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,” J. Geophys. Res. 106, 23073–23095 (2001). doi 10.1029/2001JD000807

    Article  Google Scholar 

  38. L. Zhang, D. J. Jacob, N. V. Downey, D. A. Wood, D. Blewitt, C. C. Carouge, A. van Donkelaar, D. B. A. Jones, L. T. Murray, and Y. Wang, “Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America,” Atmos. Environ. 45 (37), 6769–6776 (2011).

    Article  Google Scholar 

  39. S.-J. Lin and R. B. Rood, “Multidimensional flux form semi-Lagrangian transport schemes,” Mon. Weather Rev. 124, 2046–2070 (1996).

    Article  Google Scholar 

  40. J.-T. Lin, D. Youn, X. -Z. Liang, and D. J. Wuebbles, “Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions,” Atmos. Environ. 42 (36), 8470–8483 (2008).

    Article  Google Scholar 

  41. P. Eller, K. Singh, A. Sandu, K. Bowman, D. K. Henze, and M. Lee, “Implementation and evaluation of an array of chemical solvers in a global chemical transport model,” Geosci. Model Dev. 2, 185–207 (2009).

    Article  Google Scholar 

  42. O. Wild, X. Zhu, and M. J. Prather, “Fast-J: accurate simulation of in- and below-cloud photolysis in tropospheric chemical models,” J. Atmos. Chem. 37, 245–282 (2000).

    Article  Google Scholar 

  43. W. Trivitayanurak, P. Adams, D. Spracklen, and K. Carslaw, “Tropospheric aerosol microphysics simulation with assimilated meteorology: Model description and intermodel comparison,” Atmos. Chem. Phys. 8, 3149–3168 (2008).

    Article  Google Scholar 

  44. J. G. J. Olivier, J. A. Van Aardenne, F. Dentener, V. Pagliari, L. N. Ganzeveld, and J. A. H. W. Peters, “Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000,” Environ. Sci. 2, 81–99 (2005). doi doi 10.1080/15693430500400345

    Article  Google Scholar 

  45. A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, “The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions,” Geosci. Model Dev. 5, 1471–1492 (2012). doi 10.5194/gmd-5-1471-2012

    Article  Google Scholar 

  46. G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  47. C. S. Potter and S. A. Klooster, “Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation,” Tellus B 49 (1), 1–17 (1997).

    Article  Google Scholar 

  48. A. V. Vivchar, K. B. Moiseenko, and N. V. Pankratova, “Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling,” Izv., Atmos. Ocean. Phys. 46 (3), 281–293 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Scientific Fund (project no. 14-47-00049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Moiseenko.

Additional information

Translated by B. Dribinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, K.B., Shtabkin, Y.A., Berezina, E.V. et al. Regional Photochemical Surface-Ozone Sources in Europe and Western Siberia. Izv. Atmos. Ocean. Phys. 54, 545–557 (2018). https://doi.org/10.1134/S0001433818060105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060105

Keywords:

Navigation