Skip to main content
Log in

Methane Fluxes Into Atmosphere from Fennoskandian Lakes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The experimental data on methane fluxes into the atmosphere from Fennoscandian lakes is analyzed. The contribution made by the lake network of this northern region to the atmospheric methane budget is estimated as 320 ± 23 KtCH4 per year. From 16 to 37% of the annual methane emission from Fennoscandian lakes is carried out by methane produced during the ice cover period. The methane fluxe rate from studied lakes is estimated as 2.6 ± 0.2 gCH4m–2 yr–1. Among lakes of the region, small lakes (area <0.1 km2) are the most intensive sources of atmospheric methane per unit area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. Verpoorter, T. Kutser, D. A. Seekell, and L. J. Tranvik, “A global inventory of lakes based on high-resolution satellite imagery,” Geophys. Res. Lett. 41 (1), 6396–6402 (2014).

    Article  Google Scholar 

  2. L. J. Tranvik, J. A. Downing, J. B. Cotner, et al., “Lakes and reservoirs as regulators of carbon cycling and climate,” Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  Google Scholar 

  3. D. Bastviken, L. J. Tranvik, J. A. Downing, et al., “Freshwater methane emissions offset the continental carbon sink,” Science 331, 50 (2011).

    Article  Google Scholar 

  4. M. Saunois, P. Bousquet, B. Poulter, et al., “The global methane budget 2000–2012,” Earth Syst. Sci. Data 8, 697–751 (2016).

    Article  Google Scholar 

  5. V. F. Gal’chenko, Methanotrophic Bacteria (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  6. D. Bastviken, J. Cole, M. Pace, and L. Tranvik, “Methane emissions from lakes: dependence of lake characteristics, two regional assessments and a global estimate,” Global Biogeochem. Cycles 18, GB4009 (2004).

    Article  Google Scholar 

  7. P. Rinta, D. Bastviken, J. Schilder, et al., “Higher late summer methane emission from central than northern European lakes,” J. Limnol. 76 (1), 52–67 (2017).

    Google Scholar 

  8. S. Natchimuthu, B. Panneer Selvam, and D. Bastviken, “Influence of weather variables on methane and carbon dioxide flux from a shallow pond,” Biogeochemistry 119, 403–413 (2014).

    Article  Google Scholar 

  9. J. T. Huttunen, J. Alm, A. Liikanen, et al., “Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions,” Chemosphere 52 (3), 609–621 (2003).

    Article  Google Scholar 

  10. I. Bergström, S. Mäkelä, P. Kankaala, and P. Kortelainen, “Methane efflux from littoral vegetation stands of southern boreal lakes: An upscaled, regional estimate,” Atmos. Environ. 41, 339–351 (2007).

    Article  Google Scholar 

  11. P. Kankaala, A. Ojala, and T. Käki, “Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake,” Biogeochemistry 68, 297–311 (2004).

    Article  Google Scholar 

  12. S. Juutinen, J. Alm, T. Larmola, et al., “Major implication of the littoral zone for methane release from boreal lakes,” Global Biogeochem. Cycles 17 (4), 1117 (2003).

    Article  Google Scholar 

  13. P. Kankaala, J. Huotari, E. Peltomaa, et al., “Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake,” Limnol. Oceanogr. 51 (2), 1195–1204 (2006).

    Article  Google Scholar 

  14. C. M. Michmerhuizen, R. G. Striegl, and M. E. McDonald, “Potential methane emission from north-temperate lakes following ice melt,” Limnol. Oceanogr. 41, 985–991 (1996).

    Article  Google Scholar 

  15. J. Karlsson, R. Giesler, J. Persson, and E. Lundin, “High emission of carbon dioxide and methane during ice thaw in high latitude lakes,” Geophys. Res. Lett. 40 (6), 1123–1127 (2013).

    Article  Google Scholar 

  16. J. T. Huttunen, J. Alm, E. Saarijärvi, et al., “Contribution of winter to the annual CH4 emission from a eutrophied boreal lake,” Chemosphere 50, 247–250 (2003).

    Article  Google Scholar 

  17. H. Miettinen, J. Pumpanen, J. J. Heiskanen, et al., “Towards a more comprehensive understanding of lacustrine greenhouse gas dynamics—two-year measurements of concentrations and fluxes of CO2, CH4 and N2O in a typical boreal lake surrounded by managed forests,” Boreal Environ. Res. 20 (1), 75–89 (2015).

    Google Scholar 

  18. E. J. Lundin, J. Klaminder, D. Bastviken, et al., “Large difference in carbon emission-burial balances between boreal and Arctic lakes,” Sci. Rep. 5, 14248 (2015).

    Article  Google Scholar 

  19. M. Wik, R. K. Varner, AnthonyK. Walter, et al., “Climate-sensitive northern lakes and ponds are critical components of methane release,” Nature Geosci. 9, 99–105 (2016).

    Article  Google Scholar 

  20. A. Sepulveda-Jauregui, K. M. Walter Anthony, K. Martinez-Cruz, et al., “Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska,” Biogeosciences 12, 3197–3223 (2015).

    Article  Google Scholar 

  21. U. Bohn and G. D. Katenina, Map of the Natural Vegetation of Europe (Scale 1 : 2 500 000), Federal Agency for Nature Conservation, Bonn, 2000.

  22. A. Henriksen, B. L. Skjelkvale, J. Mannio, et al., “Northern European lake survey – 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales,” Ambio 27 (2), 80–91 (1998).

    Google Scholar 

  23. Lakes of Karelia. A Handbook, Ed. by N. N. Filatov and V. I. Kukharev (Karel’skii nauchnyi tsentr RAN, Petrozavodsk, 2013) [in Russian].

  24. The Finnish Eurowaternet with Information about Finnish Water Resources and Monitoring Strategies, Ed. by J. Niemi, P. Heinonen, S. Mitikka, (Finnish Environ. Inst., Helsinki, 2001).

    Google Scholar 

  25. J. T. Huttunen, T. S. Väisänen, S. K. Hellsten, et al., “Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland,” Global Biogeochem. Cycles 16 (1), 1003 (2002).

    Article  Google Scholar 

  26. L. L. Golubyatnikov and V. S. Kazantsev, “Contribution of tundra lakes in Western Siberia to the atmospheric methane budget,” Izv., Atmos. Ocean. Phys. 49 (4), 395–403 (2013).

    Article  Google Scholar 

  27. J. Karlsson, T. R. Christensen, P. Crill, et al., “Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment,” J. Geophys. Res. 115, G03006 (2010).

    Article  Google Scholar 

  28. T. R. Christensen, T. Johansson, M. Olsrud, et al., “A catchment-scale carbon and greenhouse gas budget of a subarctic landscape,” Phil. Trans. R. Soc. A 365, 1643–1656 (2007).

    Article  Google Scholar 

  29. M. Wik, P. M. Crill, R. K. Varner, and D. Bastviken, “Multiyear measurements of ebullitive methane flux from three subarctic lakes,” J. Geophys. Res. 118, 1307–1321 (2013).

    Article  Google Scholar 

  30. E. J. Lundin, R. Giesler, A. Persson, et al., “Integrating carbon emissions from lakes and streams in a subarctic catchment,” J. Geophys. Res. 118, 1200–1207 (2013).

    Article  Google Scholar 

  31. M. Jammet, S. Dengel, E. Kettner, et al., “Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic,” Biogeosciences 14, 5189–5216 (2017).

    Article  Google Scholar 

  32. M. van Hardenbroek, O. Heiri, F. J. W. Parmentier, et al., “Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains,” Quat. Sci. Rev. 66, 74–84 (2013).

    Article  Google Scholar 

  33. M. E. Repo, J. T. Huttunen, A. V. Naumov, et al., “Release of CO2 and CH4 from small wetlands lakes in Western Siberia,” Tellus B 59, 788–796 (2007).

    Article  Google Scholar 

  34. F. Bouchard, I. Laurion, V. Preskienis, et al., “Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut),” Biogeosciences 12, 7279–7298 (2015).

    Article  Google Scholar 

  35. P. Kankaala, J. Huotari, T. Tulonen, and A. Ojala, “Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape,” Limnol. Oceanogr. 58 (6), 1915–1930 (2013).

    Article  Google Scholar 

  36. M. van Hardenbroek, A. F. Lotter, D. Bastviken, et al., “Relationship between δ13C of chironomid remains and methane flux in Swedish lakes,” Freshwater Biol. 57, 166–177 (2012).

    Article  Google Scholar 

  37. L. L. Golubyatnikov, “Study of methane emissions from northern lakes in Russia,” in Ecology, Economics, Informatics, System Analysis and Modeling of Economic and Ecological Systems. Collection of Papers (Yuzhnyi federal’nyi universitet, Rostov on Don, 2015), Vol. 1, pp. 95–97.

  38. H. E. Chmiel, J. Kokic, B. A. Denfeld, et al., “The role of sediments in the carbon budget of a small boreal lake,” Limnol. Oceanogr. 61, 1814–1825 (2016).

    Article  Google Scholar 

  39. J. Lopéz Bellido, E. Peltomaa, and A. Ojala, “An urban boreal lake basin as a source of CO2 and CH4,” Environ. Pollut. 159, 1649–1659 (2011).

    Article  Google Scholar 

  40. J. T. Huttunen, T. S. Väisänen, M. Heikkinen, et al., “Exchange of CO2, CH4 and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests,” Plant Soil 242, 137–146 (2002).

    Article  Google Scholar 

  41. P. Milberg, L. Törnqvist, L. M. Westerberg, and D. Bastviken, “Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes,” AoB Plants 9, plx029 (2017).

    Article  Google Scholar 

  42. S. Natchimuthu, I. Sundgren, M. Galfalk, et al., “Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates,” Limnol. Oceanogr. 61, S13–S26 (2016).

    Article  Google Scholar 

  43. J. López Bellido, T. Tulonen, P. Kankaala, and A. Ojala, “CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Pääjärvi, Southern Finland),” J. Geophys. Res. 114, G04007 (2009).

    Article  Google Scholar 

  44. T. Larmola, J. Alm, S. Juutinen, et al., “Contribution of vegetated littoral zone to winter fluxes of carbon dioxide and methane from boreal lakes,” J. Geophys. Res. 109, D19102 (2004).

    Article  Google Scholar 

  45. C. E. Weyhenmeyer, “Methane emissions from beaver ponds: Rates, patterns, and transport mechanisms,” Global Biogeochem. Cycles 13 (4), 1079–1090 (1999).

    Article  Google Scholar 

  46. A. R. Phelps, K. M. Peterson, and M. O. Jeffries, “Methane efflux from high-latitude lakes during spring ice melt,” J. Geophys. Res. 103, 29029–29036 (1998).

    Article  Google Scholar 

  47. J. Schilder, D. Bastviken, M. van Hardenbroek, et al., “Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes,” Geophys. Res. Lett. 40, 5752–5756 (2013).

    Article  Google Scholar 

  48. E. Podgrajsek, E. Sahlée, D. Bastviken, et al., “Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes,” Biogeosciences 11, 4225–4233 (2014).

    Article  Google Scholar 

  49. T. DelSontro, L. Boutet, A. St-Pierre, et al., “Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity,” Limnol. Oceanogr. 61 (S1), S62–S77 (2016).

    Article  Google Scholar 

  50. M. A. Holgerson and P. A. Raymond, “Large contribution to inland water CO2 and CH4 emissions from very small ponds,” Nature Geosci. 9, 222–228 (2016).

    Article  Google Scholar 

  51. N. N. Filatov, A. P. Georgiev, T. V. Efremova, et al., “Response of lakes in Eastern Fennoscandia and Eastern Antarctica to climate changes,” Dokl. Earth Sci. 444 (2), 752–755 (2012).

    Article  Google Scholar 

  52. S. Bertilsson, A. Burgin, C. C. Carey, et al., “The under-ice microbiome of seasonally frozen lakes,” Limnol. Oceanogr. 58, 1998–2012 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank V.S. Kazantsev for his help in processing information about the lake areas and the personnel at Paanajarvi National Park for their assistance in our field research. This work was supported by the Russian Foundation of Basic Research (project no. 14-05-91764) and by the state assignment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. L. Golubyatnikov or I. Mammarella.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubyatnikov, L.L., Mammarella, I. Methane Fluxes Into Atmosphere from Fennoskandian Lakes. Izv. Atmos. Ocean. Phys. 54, 570–580 (2018). https://doi.org/10.1134/S0001433818060075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060075

Keywords:

Navigation