Skip to main content
Log in

Spatial Structure of the Antarctic Water Flow in the Vema Fracture Zone of the Mid-Atlantic Ridge

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

We study the Antarctic Bottom Water (AABW) flow in the Vema Fracture Zone of the Mid-Atlantic Ridge using the high-resolution Institute of Numerical Mathematics Ocean Model (INMOM) and data from field measurements. The key feature of this numerical modeling is high horizontal and vertical resolution in the bottom layer for the simulation of the flow in the narrow deepwater fracture, as well as the use of high-quality topography based on multibeam echo sounder measurements. Direct CTD and LADCP measurements performed onboard the R/V Akademik Sergey Vavilov in 2006 and 2014–2016 were used to verify the model. In this work, we analyze both the thermohaline structure of the bottom layer in the Vema Fracture Zone and kinematics of the flow over its entire length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. Wüst and A. Defant, Schichtung und Zirkulation des Atlantischen Ozeans, Ser.: Wissenschaftliche Ergebnisse der deutschen atlantischen Expedition auf dem Forschungs- und Vermessungsschiff “Meteor” 1925–1927 (Walter de Gruyter, Berlin, 1936).

    Google Scholar 

  2. E. G. Morozov, R. Yu. Tarakanov, and N. I. Makarenko, “Flows of Antarctic bottom water through fractures in the southern part of the North Mid-Atlantic Ridge,” Oceanology (Engl. Transl.) 55 (6), 795–800 (2015).

  3. R. Yu. Tarakanov and E. G. Morozov, “Flow of Antarctic bottom water at the output of the Vema Channel,” Oceanology (Engl. Transl.) 55 (2), 153–161 (2015).

  4. P. G. Baines and S. Condie, “Observation and modelling of Antarctic downslope flows: A review, in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin (Antarctic Res. Series 75), Ed. by S.  S.  Jacobs and R. F. Weiss (Am. Geophys. Union, Washington, D.C., 1998), pp. 29–49. doi 10.1029/ AR075p0029

    Google Scholar 

  5. E. G. Morozov, A. N. Demidov, and R. Yu. Tarakanov, “Transport of Antarctic waters in the deep channels of the Atlantic Ocean,” Dokl. Earth Sci. 423 (8), 1286–1289 (2008).

    Article  Google Scholar 

  6. E. G. Morozov, A. N. Demidov, R. Y. Tarakanov, and W. Zenk, Abyssal Channels in the Atlantic Ocean: Water Structure and Flows (Springer, Dordrecht, 2010).

    Book  Google Scholar 

  7. E. G. Morozov, R. Y. Tarakanov, D. I. Frey, T. A. Demidova, N. I. Makarenko, “Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge,” J. Oceanogr. 74 (1) (2018). doi 10.1007/s10872-017-0445-x

  8. B. C. Heezen, R. D. Gerard, and M. Tharp, “The Vema Fracture Zone in the equatorial Atlantic,” J. Geophys. Res. 69, 733–739 (1964).

    Article  Google Scholar 

  9. A. Vangriesheim, “Antarctic bottom water flow through the Vema Fracture Zone,” Oceanol. Acta 3, 199–207 (1980).

    Google Scholar 

  10. M. Rhein, L. Stramma, and G. Krahmann, “The spreading of Antarctic bottom water in the tropical Atlantic,” Deep Sea Res. 45, 507–527 (1998).

    Article  Google Scholar 

  11. A. N. Demidov, S. A. Dobrolyubov, E. G. Morozov, and R. Yu. Tarakanov, “Transport of bottom waters through the Vema Fracture Zone in the Mid-Atlantic ridge,” Dokl. Earth Sci. 416 (1), 1120–1124 (2007).

    Article  Google Scholar 

  12. A. Santoso and M. H. England, “Antarctic bottom water variability in a coupled climate model,” J. Phys. Oceanogr. 38, 1870–1893 (2008).

    Article  Google Scholar 

  13. N. A. Diansky, Modeling of Ocean Circulation and Investigation of Its Response to Short- and Long-Period Atmospheric Forcing (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  14. N. A. Diansky, A. V. Bagno, and V. B. Zalesny, “Sigma model of global ocean circulation and its sensitivity to variations in wind stress,” Izv., Atmos. Ocean. Phys. 38 (4), 537–556 (2002).

    Google Scholar 

  15. D. Brydon, S. San, and R. Bleck, “A new approximation of the equation of state for seawater, suitable for numerical ocean models,” J. Geophys. Res. 104 (C1), 1537–1540 (1999).

    Article  Google Scholar 

  16. S. Griffies, A. Gnanadesikan, K. W. Dixon, J. Dunne, R. Gerdes, M. J. Harrison, A. Rosati, J. L. Russell, B. L. Samuels, M. J. Spelman, M. Winton, and R. Zhang, “Formulation of an ocean model for global climate simulations,” Ocean Sci. 1, 45–79 (2005).

    Article  Google Scholar 

  17. G. I. Marchuk, A. S. Rusakov, V. B. Zalesny, and N. A. Diansky, “Splitting numerical technique with application to the high resolution simulation of the Indian ocean circulation,” Pure Appl. Geophys. 162, 1407–1429 (2005).

    Article  Google Scholar 

  18. V. B. Zalesny and V. O. Ivchenko, “Simulating large-scale circulation in seas and oceans,” Izv., Atmos. Ocean. Phys. 51 (3), 259–271 (2015)

    Article  Google Scholar 

  19. M. V. Anisimov and N. A. Diansky, “Physical mechanism of the westward drift of the frontal current rings in the ocean,” Oceanology (Engl. Transl.) 48 (3), 299–305 (2008).

  20. N. A. Diansky, V. V. Fomin, N. V. Zhokhova, and A. N.  Korshenko, “Simulations of currents and pollution transport in the coastal waters of Big Sochi,” Izv., Atmos. Ocean. Phys. 49 (6), 611–621 (2013).

    Article  Google Scholar 

  21. V. B. Zalesny, A. V. Gusev, and V. V. Fomin, “Numerical model of nonhydrostatic ocean dynamics based on methods of artificial compressibility and multicomponent splitting,” Oceanology (Engl. Transl.) 56 (6), 876–887 (2016).

  22. W. B. F. Ryan, S. Carbotte, J. O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R. A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zem, “Global multi-resolution topography synthesis,” Geochem. Geophys. Geosyst. 10, Q03014 (2009). doi 10.1029/2008GC002332

    Article  Google Scholar 

  23. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2009, Vol. 1: Temperature (U.S. Government Printing Office, Washington, D.C., 2010).

  24. Sea-Bird Electronics, SBE 19plus SeaCAT Profiles CTD User Manual, Release Date 08/27/2016. http://www.seabird.com/.

  25. M. Visbeck, “Deep velocity profiling using lowered acoustic Doppler current profiler: Bottom track and inverse solution,” J. Atmos. Oceanic Technol. 19 (5), 794–807 (2002).

    Article  Google Scholar 

  26. World Ocean Database Geographically Sorted Data, WOD13 (2013). http://www.nodc.noaa.gov/OC5/ WOD/datageo.html.

  27. A. S. Sarkisyan and J. E. Sündermann, Modelling Ocean Climate Variability (Springer, Berlin, 2009).

    Book  Google Scholar 

  28. Yu. L. Demin, R. A. Ibrayev, and A. S. Sarkisyan, Calibration of climate circulation and reproduction models, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 27 (10), 1054–1067 (1991).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work of E.G. Morozov (oceanic measurements) was performed within the state task of the Federal Agency of Scientific Organizations of Russia (theme no. 0149-2014-0008) and supported in part by expedition grant of the Russian Foundation for Basic Research 17-08-00085. The work of D.I. Frey (modeling) was supported by the Russian Science Foundation (grant no. 14-50-00095). The investigations of N.A. Diansky and V.V. Fomin were supported by the Russian Science Foundation (grant no. 17-17-01295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Frey.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, D.I., Morozov, E.G., Fomin, V.V. et al. Spatial Structure of the Antarctic Water Flow in the Vema Fracture Zone of the Mid-Atlantic Ridge. Izv. Atmos. Ocean. Phys. 54, 621–625 (2018). https://doi.org/10.1134/S0001433818060063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060063

Keywords:

Navigation