Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 1016–1018 | Cite as

Analysis of Capabilities for Satellite Monitoring of Atmospheric Gaseous Composition Using IRFS-2 Instrument

  • A. S. Garkusha
  • A. V. Polyakov
  • Yu. M. Timofeyev
The Use of Space Information about the Earth

Abstract

Capabilities of the total column monitoring of different minor gaseous compounds of the atmosphere with the satellite IRFS-2 Fourier interferometer have been studied. The possibilities of determining the СО2, О3, СH4, HNO3, N2O, CH3OH, HCFC-22, CFC-11, CFC-12, PAN, and ССl4 total columns have been investigated on the basis of line-by-line calculations of the forward problem operator and calculation of error matrices by the optimal estimation method. It has been shown that the IRFS-2 device could be used to measure the total columns of СО2, О3, N2O, СH4, and HNO3. In the information-gathering mode, it is also possible to retrieve the CH3OH, HCFC-22, CFC-11, CFC-12, PAN, and ССl4 total columns due to the suppression of random measurement errors.

Keywords

trace atmospheric gases remote sensing of the atmosphere Fourier interferometry atmospheric composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beer, R., Thomas, A.G., and David, M.R., Tropospheric emission spectrometer for the Earth Observing System’s aura satellite, Appl. Opt., 2001, vol. 40, no. 15, pp. 2356–2367.CrossRefGoogle Scholar
  2. Clerbaux, C., Hadji-Lazaro, J., Turquety, S., et al., Trace gas measurements from infrared satellite for chemistry and climate applications, Atm. Chem. Phys., 2003, no. 3, pp. 1495–1508.CrossRefGoogle Scholar
  3. Clerbaux, C., Boynard, A., Clarisse, L., et al., Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atm. Chem. Phys., 2009, no. 9, pp. 6041–6054.CrossRefGoogle Scholar
  4. Clough, S.A., Shephard, M.W., Mlawer, E.J., Delamere, J.S., Iacono, M.J., Cady-Pereira, K., Boukabara, S., and Brown, P.D., Atmospheric radiative transfer modeling: A summary of the AER codes, Short Communication, J. Quant. Spectrosc. Radiat. Transfer, 2005, no. 91, pp. 233–244.CrossRefGoogle Scholar
  5. Crevoisier, C., Chedin, A. and Scott, N.A., AIRS channel selection for CO2 and other trace-gas retrievals, Q. J. R. Meteorol. Soc., 2003, no. 129, pp. 2719–2740.CrossRefGoogle Scholar
  6. Marsh, D.R., Mills, M.J., Kinnison, D.E., Lamarque, J.-F., Calvo, N., and Polvani, L.M., Climate change from 1850 to 2005 simulated in CESM1(WACCM), J. Clim., 2013, vol. 26, no. 19. pp. 7372–7391.CrossRefGoogle Scholar
  7. Polyakov, A.V., Timofeev, Yu.M., and Uspenskii, A.B., Temperature–humidity sounding of the atmosphere from data of satellite IR sounders with high spectral resolution (IRFS-2), Issled. Zemli Kosmosa, 2009, no. 5, pp. 3–10.Google Scholar
  8. Polyakov, A.V., Timofeev, Yu.M., and Uspenskii, A.B., Possibilities for determining the content of ozone and trace gases from data of satellite IR sounders with high spectral resolution (IRFS-2), Issled. Zemli Kosmosa, 2010, no. 3, pp. 3–11.Google Scholar
  9. Rodgers, C.D., Inverse Methods for Atmospheric Sounding. Theory and Practice, vol. 2, Singapore: World Scientific, 2000.Google Scholar
  10. Timofeev, Yu.M., Satellite methods for studying the gas composition of the atmosphere, Izv. Akad. Nauk: Fiz. Atmos. Okeana, 1989, vol. 25, no. 5, pp. 451–472.Google Scholar
  11. Turchin, V.F., Kozlov, V.P., and Malkevich, M.S., The use of mathematical-statistics methods in the solution of incorrectly posed problems, Phys.-Usp., 1971, vol. 13, no. 6, pp. 681–703.Google Scholar
  12. WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project, Rep. no. 50, Geneva, Switzerland, 2007.Google Scholar
  13. Worden, J., Kulawik, S.S., Shephard, M.W., Clough, S.A., Worden, H., Bowman, K., and Goldman, A., Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection, J. Geophys. Res., 2004, vol. 109, D09308. doi 10.1029/2004JD004522CrossRefGoogle Scholar
  14. Zavelevich, F.S., Golovin, Yu.M., and Desyatov, A.V., Technological model of the on-board Fourier spectrometer IKFS-2 for temperature-humidity probing of the atmosphere, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2009, vol. 6, no. 1, pp. 259–267.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Garkusha
    • 1
  • A. V. Polyakov
    • 1
  • Yu. M. Timofeyev
    • 1
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations