Skip to main content
Log in

Spatio-Temporal Variability of the Phase of Total Ozone Quasi-Decennial Oscillations

  • Stydying Atmosphere and Oceans from Space
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The SBUV/SBUV2 (65° S–65° N) and Bodeker Scientific (90° S–90° N) satellite databases have been used for composite and cross-wavelet analyses of the spatio-temporal variability of phase relations between a 11-year cycle of solar activity (SA) and quasi-decennial oscillations (QDOs) of total ozone content (TOC). For globally average TOC values, the QDO maxima coincide in phase with the solar-activity maxima, and amplitude variations of TOC correlate with those of the 11-year solar cycle. According to the analysis of amplitude and phase of QDOs for the zonal average TOC fields, a QDO amplitude is about 6–7 Dobson Units (DU) in the high northern and southern latitudes, and it does not exceed 2–3 DU in the tropic regions. The latitudinal TOC variations are distinguished by a delay of the quasi-decennial oscillation phase in the southern latitudes in comparison with the northern latitudes. The TOC maxima phase coincides with the SA maxima phase in the tropic regions; the TOC variations go ahead of the SA variations, on average, in moderate and high latitudes of the Northern Hemisphere; the TOC variations are behind the SA variations in the Southern Hemisphere. The phase delay between TOC QDO maxima in the northern and southern latitudes appears to increase in the course of time, and the TOC quasi-decennial variations in the Arctic and Antarctic subpolar regions occur approximately in an antiphase over the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekoryukov, V.I., Glazkov, V.N., and Kokin, G.A., Longterm variations in global ozone, Izv., Atmos. Ocean. Phys., 2009, vol. 45, no. 5, pp. 566–574.

    Article  Google Scholar 

  • Bodeker, G.E., Shiona, H., and Eskes, H., Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 2005, vol. 5, pp. 2603–2615. doi 10.5194/acp-5-2603-2005

    Article  Google Scholar 

  • Bodeker, G.E., Hassler, B., Young, P.J., and Portmann, R.W., A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulation, Earth Syst. Sci. Data, 2013, vol. 5, pp. 31–43. doi 10.5194/essd-5-31-2013

    Google Scholar 

  • Chehade, W., Weber, M., and Burrows, J., Total ozone trends and variability during 1979–2012 from merged data sets of various satellites, Atmos. Chem. Phys., 2014, vol. 14, no. 13, pp. 7059–7074.

    Article  Google Scholar 

  • Fioletov, V.E., Bodeker, G.E., Miller, A.J., McPeters, R.D., and Stolarski, R., Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000, J. Geophys. Res., 2002, vol. 107, no. D22, 4647. doi 10.1029/2001JD001350 Frith, S.M., Kramarova, N.A., Stolarski, R.S., McPeters, R.D., Bhartia, P.K., and Labow, G.J., Recent changes in column ozone based on the SBUV version 8.6 merged ozone dataset, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 9735–9751. doi 10.1002/2014JD021889

    Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., and White, W., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282

    Article  Google Scholar 

  • Grinsted, A., Moore, J.C., and Jevrejeva, S., Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Proc. Geophys., 2004, no. 11, pp. 561–566. doi 10.5194/npg-11-561-2004

    Article  Google Scholar 

  • Gruzdev, A.N. and Brasseur, G.P., Effect of the 11-year cycle of solar activity on characteristics of the total ozone annual variation, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 3, pp. 344–356.

    Article  Google Scholar 

  • Gruzdev, A.N., Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 633–639.

    Article  Google Scholar 

  • Harris, N.R.P., Hassler, B., Tummon, F., Bodeker, G.E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P.K., Boone, C.D., Bourassa, A., Davis, S.M., Degenstein, D., Delcloo, A., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M.J., Kyrölä, E., Laine, M., Leblanc, S.T., Lambert, J.-C., Liley, B., Mahieu, E., Maycock, A., de Mazière, M., Parrish, A., Querel, R., Rosenlof, K.H., Roth, C., Sioris, C., Staehelin, J., Stolarski, R.S., Stubi, R., Tamminen, J., Vigouroux, C., Walker, K.A., Wang, H.J., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone. Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 2015, vol. 15, pp. 9965–9982. doi 10.5194/acp-15-9965-2015

    Article  Google Scholar 

  • Knibbe, J.S. and de Laat, A.T., Spatial regression analysis on 32 years of total column ozone data, Atmos. Chem. Phys., 2014, vol. 14, pp. 8461–8482. doi 10.5194/acp-14-8461-2014

    Article  Google Scholar 

  • Labow, G.J., McPeters, R.D., Bhartia, P.K., and Kramarova, N., A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 7370–7378.

    Google Scholar 

  • McPeters, R.D., Bhartia, P.K., Haffner, D., Labow, G.J., and Flynn, L., The version 8.6 SBUV ozone data record: An overview, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 8032–8039.

    Google Scholar 

  • Smyshlyaev, S.P., Mareev, E.A., Galin, V.Ya., and Blakitnaya, P.A., Simulation of the indirect impact that the 11-year solar cycle has on the gas composition of the atmosphere, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 5, pp. 623–634.

    Article  Google Scholar 

  • Smyshlyaev, S.P., Galin, V.Ya., Blakitnaya, P.A., Lemishchenko, A.K., Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 16–32.

    Article  Google Scholar 

  • Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, pp. 61–78.

    Article  Google Scholar 

  • Tummon, F., Hassler, B., Harris, N.R.P., Staehelin, J., Steinbrecht, W., Anderson, J., Bodeker, G.E., Bourassa, A., Davis, S.M., Degenstein, D., Frith, S.M., Froidevaux, L., Kyrölä, E., Laine, M., Long, C., Penckwitt, A.A., Sioris, C.E., Rosenlof, K.H., Roth, C., Wang, H.-J., and Wild, J., Intercomparison of vertically resolved merged satellite ozone data sets: Interannual variability and long-term trends, Atmos. Chem. Phys., 2015, vol. 15, pp. 3021–3043. doi 10.5194/acp-15-3021-2015

    Article  Google Scholar 

  • Visheratin, K.N., Relationship between phases of quasidecadal oscillations of total ozone and the 11-year solar cycle, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 1, pp. 94–102.

    Article  Google Scholar 

  • Visheratin K.N. and Kuznetzov V.V., Basic characteristics of total ozone global field variability from merged databases comparison, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 3, pp. 165–172. doi 10.21046/2070-7401-2016-13-3-165-172

    Article  Google Scholar 

  • Visheratin, K.N., Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland), Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 66–73.

    Google Scholar 

  • Visheratin, K.N., Nerushev, A.F., Orozaliev, M.D., Zheng, X., Sun, Sh., Liu, L., Temporal variability of total ozone in the Asian region inferred from groundbased and satellite measurement data, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 894–903.

    Article  Google Scholar 

  • WDC–SILSO (World Data System–Sunspot Index and Long-Term Solar Observations), Royal Observatory of Belgium, Brussels, 2015.

  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion, Geneva, 2010, Rep. no. 52.

  • WOUDC (World Ozone and Ultraviolet Radiation Centre), 2014. http://www.woudc.org.

  • Zvyagintsev, A.M., Vargin, P.N., and Peshin, S., Total ozone variations and trends during the period 1979–2014, Atmos. Oceanic Opt., 2015, vol. 28, no. 6, pp. 575–584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Visheratin.

Additional information

Original Russian Text © K.N. Visheratin, 2017, published in Issledovanie Zemli iz Kosmosa, 2017, No. 2, pp. 88–95.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visheratin, K.N. Spatio-Temporal Variability of the Phase of Total Ozone Quasi-Decennial Oscillations. Izv. Atmos. Ocean. Phys. 53, 904–910 (2017). https://doi.org/10.1134/S0001433817090341

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817090341

Keywords

Navigation