Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 904–910 | Cite as

Spatio-Temporal Variability of the Phase of Total Ozone Quasi-Decennial Oscillations

  • K. N. Visheratin
Stydying Atmosphere and Oceans from Space

Abstract

The SBUV/SBUV2 (65° S–65° N) and Bodeker Scientific (90° S–90° N) satellite databases have been used for composite and cross-wavelet analyses of the spatio-temporal variability of phase relations between a 11-year cycle of solar activity (SA) and quasi-decennial oscillations (QDOs) of total ozone content (TOC). For globally average TOC values, the QDO maxima coincide in phase with the solar-activity maxima, and amplitude variations of TOC correlate with those of the 11-year solar cycle. According to the analysis of amplitude and phase of QDOs for the zonal average TOC fields, a QDO amplitude is about 6–7 Dobson Units (DU) in the high northern and southern latitudes, and it does not exceed 2–3 DU in the tropic regions. The latitudinal TOC variations are distinguished by a delay of the quasi-decennial oscillation phase in the southern latitudes in comparison with the northern latitudes. The TOC maxima phase coincides with the SA maxima phase in the tropic regions; the TOC variations go ahead of the SA variations, on average, in moderate and high latitudes of the Northern Hemisphere; the TOC variations are behind the SA variations in the Southern Hemisphere. The phase delay between TOC QDO maxima in the northern and southern latitudes appears to increase in the course of time, and the TOC quasi-decennial variations in the Arctic and Antarctic subpolar regions occur approximately in an antiphase over the last two decades.

Keywords

total ozone content quasi-decennial variations cross-wavelet analysis composite method solar activity and satellite data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bekoryukov, V.I., Glazkov, V.N., and Kokin, G.A., Longterm variations in global ozone, Izv., Atmos. Ocean. Phys., 2009, vol. 45, no. 5, pp. 566–574.CrossRefGoogle Scholar
  2. Bodeker, G.E., Shiona, H., and Eskes, H., Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 2005, vol. 5, pp. 2603–2615. doi 10.5194/acp-5-2603-2005CrossRefGoogle Scholar
  3. Bodeker, G.E., Hassler, B., Young, P.J., and Portmann, R.W., A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulation, Earth Syst. Sci. Data, 2013, vol. 5, pp. 31–43. doi 10.5194/essd-5-31-2013Google Scholar
  4. Chehade, W., Weber, M., and Burrows, J., Total ozone trends and variability during 1979–2012 from merged data sets of various satellites, Atmos. Chem. Phys., 2014, vol. 14, no. 13, pp. 7059–7074.CrossRefGoogle Scholar
  5. Fioletov, V.E., Bodeker, G.E., Miller, A.J., McPeters, R.D., and Stolarski, R., Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000, J. Geophys. Res., 2002, vol. 107, no. D22, 4647. doi 10.1029/2001JD001350 Frith, S.M., Kramarova, N.A., Stolarski, R.S., McPeters, R.D., Bhartia, P.K., and Labow, G.J., Recent changes in column ozone based on the SBUV version 8.6 merged ozone dataset, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 9735–9751. doi 10.1002/2014JD021889Google Scholar
  6. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., and White, W., Solar influences on climate, Rev. Geophys., 2010, vol. 48, RG4001. doi 10.1029/2009RG000282CrossRefGoogle Scholar
  7. Grinsted, A., Moore, J.C., and Jevrejeva, S., Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Proc. Geophys., 2004, no. 11, pp. 561–566. doi 10.5194/npg-11-561-2004CrossRefGoogle Scholar
  8. Gruzdev, A.N. and Brasseur, G.P., Effect of the 11-year cycle of solar activity on characteristics of the total ozone annual variation, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 3, pp. 344–356.CrossRefGoogle Scholar
  9. Gruzdev, A.N., Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 633–639.CrossRefGoogle Scholar
  10. Harris, N.R.P., Hassler, B., Tummon, F., Bodeker, G.E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P.K., Boone, C.D., Bourassa, A., Davis, S.M., Degenstein, D., Delcloo, A., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M.J., Kyrölä, E., Laine, M., Leblanc, S.T., Lambert, J.-C., Liley, B., Mahieu, E., Maycock, A., de Mazière, M., Parrish, A., Querel, R., Rosenlof, K.H., Roth, C., Sioris, C., Staehelin, J., Stolarski, R.S., Stubi, R., Tamminen, J., Vigouroux, C., Walker, K.A., Wang, H.J., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone. Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 2015, vol. 15, pp. 9965–9982. doi 10.5194/acp-15-9965-2015CrossRefGoogle Scholar
  11. Knibbe, J.S. and de Laat, A.T., Spatial regression analysis on 32 years of total column ozone data, Atmos. Chem. Phys., 2014, vol. 14, pp. 8461–8482. doi 10.5194/acp-14-8461-2014CrossRefGoogle Scholar
  12. Labow, G.J., McPeters, R.D., Bhartia, P.K., and Kramarova, N., A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 7370–7378.Google Scholar
  13. McPeters, R.D., Bhartia, P.K., Haffner, D., Labow, G.J., and Flynn, L., The version 8.6 SBUV ozone data record: An overview, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 8032–8039.Google Scholar
  14. Smyshlyaev, S.P., Mareev, E.A., Galin, V.Ya., and Blakitnaya, P.A., Simulation of the indirect impact that the 11-year solar cycle has on the gas composition of the atmosphere, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 5, pp. 623–634.CrossRefGoogle Scholar
  15. Smyshlyaev, S.P., Galin, V.Ya., Blakitnaya, P.A., Lemishchenko, A.K., Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 16–32.CrossRefGoogle Scholar
  16. Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, pp. 61–78.CrossRefGoogle Scholar
  17. Tummon, F., Hassler, B., Harris, N.R.P., Staehelin, J., Steinbrecht, W., Anderson, J., Bodeker, G.E., Bourassa, A., Davis, S.M., Degenstein, D., Frith, S.M., Froidevaux, L., Kyrölä, E., Laine, M., Long, C., Penckwitt, A.A., Sioris, C.E., Rosenlof, K.H., Roth, C., Wang, H.-J., and Wild, J., Intercomparison of vertically resolved merged satellite ozone data sets: Interannual variability and long-term trends, Atmos. Chem. Phys., 2015, vol. 15, pp. 3021–3043. doi 10.5194/acp-15-3021-2015CrossRefGoogle Scholar
  18. Visheratin, K.N., Relationship between phases of quasidecadal oscillations of total ozone and the 11-year solar cycle, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 1, pp. 94–102.CrossRefGoogle Scholar
  19. Visheratin K.N. and Kuznetzov V.V., Basic characteristics of total ozone global field variability from merged databases comparison, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 3, pp. 165–172. doi 10.21046/2070-7401-2016-13-3-165-172CrossRefGoogle Scholar
  20. Visheratin, K.N., Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland), Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 66–73.Google Scholar
  21. Visheratin, K.N., Nerushev, A.F., Orozaliev, M.D., Zheng, X., Sun, Sh., Liu, L., Temporal variability of total ozone in the Asian region inferred from groundbased and satellite measurement data, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 894–903.CrossRefGoogle Scholar
  22. WDC–SILSO (World Data System–Sunspot Index and Long-Term Solar Observations), Royal Observatory of Belgium, Brussels, 2015.Google Scholar
  23. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion, Geneva, 2010, Rep. no. 52.Google Scholar
  24. WOUDC (World Ozone and Ultraviolet Radiation Centre), 2014. http://www.woudc.org.Google Scholar
  25. Zvyagintsev, A.M., Vargin, P.N., and Peshin, S., Total ozone variations and trends during the period 1979–2014, Atmos. Oceanic Opt., 2015, vol. 28, no. 6, pp. 575–584.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Research and Production Association TyphoonObninskRussia

Personalised recommendations