Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 918–923 | Cite as

Total Water-Vapor Distribution in the Summer Cloudless Atmosphere over the South of Western Siberia

  • D. N. Troshkin
  • N. N. Bezuglova
  • M. V. Kabanov
  • V. E. Pavlov
  • K. I. Sokolov
  • K. Yu. Sukovatov
Stydying Atmosphere and Oceans from Space
  • 9 Downloads

Abstract

The spatial distribution of the total water vapor in different climatic zones of the south of Western Siberia in summer of 2008–2011 is studied on the basis of Envisat data. The correlation analysis of the water-vapor time series from the Envisat data W and radiosonde observations w for the territory of Omsk aerological station show that the absolute values of W and w are linearly correlated with a coefficient of 0.77 (significance level p < 0.05). The distribution functions of the total water vapor are calculated based on the number of its measurements by Envisat for a cloudless sky of three zones with different physical properties of the underlying surface, in particular, steppes to the south of the Vasyugan Swamp and forests to the northeast of the Swamp. The distribution functions are bimodal; each mode follows the lognormal law. The parameters of these functions are given.

Keywords

water content in Western Siberia ENVISAT data radiosonde observation data comparative analysis distribution function of the total water vapor from the number of observation cases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fridzon, M.B., Physical model of temperature and humidity measurement errors arising in atmospheric radiosounding, Tr. Nauchno-Issled. Inst. Priborostr., 1985, no. 48, pp. 24–37. http://weather.uwyo.edu/upperair/sounding.html.Google Scholar
  2. Ippolitov, I.I., Kabanov, M.V., Loginov, S.V., and Kharyutkina, E.V., Structure and dynamics of meteorological fields on the Asian territory of Russia in the period of global warming for 1975–2005, Zh. Sib. Fed. Univ.: Biol., 2008, vol. 1, pp. 323–344.Google Scholar
  3. Issledovanie radiatsionnykh kharakteristik aerozolya v Aziatskoi chasti Rossii (Study of Aerosol Radiative Characteristics in the Asiatic Part of Russia), Sakerin, S.M., Ed., Tomsk: IOA SO RAN, 2012.Google Scholar
  4. Izrael’, Yu.A., About modern climate state and suggestions on actions to counteract climate changes, Russ. Meteorol. Hydrol., 2008, vol. 33, no. 10, pp. 611–613.CrossRefGoogle Scholar
  5. Kabanov, M.V., Seasonal regularities of the observed warming in Siberia, Atmos. Oceanic Opt., 2009, vol. 22, no. 1, pp. 108–112.CrossRefGoogle Scholar
  6. Komarov, V.S., Lomakina, N.Ya., Il’in, S.N., and Lavrinenko, A.V., Sovremennye izmeneniya klimata pogranichnogo sloya atmosfery nad territoriei Sibirskogo regiona (Modern Climate Changes in the Atmospheric Boundary Layer over the Siberian Region), Tomsk: IOA SO RAN, 2013.Google Scholar
  7. Kondrat’ev, K.Ya., Global’nyi klimat. Itogi nauki i tekhniki (Global Climate: Results from Science and Technology), Moscow: VINITI, 1987.Google Scholar
  8. Marchuk, G.I., Kondrat’ev, K.Ya., Kozoderov, V.V., and Khvorost’yanov, V.I., Oblaka i klimat (Clouds and Climate), Leningrad: Gidrometeoizdat, 1987.Google Scholar
  9. Mitchell, J.F., The greenhouse and climate change, Rev. Geophys., 1989, vol. 32, pp. 3–15.Google Scholar
  10. Otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstvii na territorii Rossiiskoi Federatsii (Assessment Report on Climate Changes and Their Effects on the Territory of the Russian Federation), vol. 1: Izmeneniya klimata (Climate Chnages), Moscow: Rosgidromet, 2008.Google Scholar
  11. Pokrovskii, O.M., Use of remote sensing data of the temperature of oceanic surface, ice cover, and atmosphere in the Arctic for studying the climate change trends in Russia, Issled. Zemli Kosmosa, 2007, no. 3, pp. 20–33.Google Scholar
  12. Retrieval of total water vapour content from MERIS measurements. http://envisat.esa.int/instruments/meris/pdf/atbd_2_04.pdf. Accessed March 18, 2011.Google Scholar
  13. Troshkin, D.N., Kabanov, M.V., Pavlov, V.E., and Romanov, A.N., Function of distribution of clouds’ optical thickness over the West Siberian Plain, Dokl. Earth Sci., 2011, vol. 436, no. 1, pp. 113–116.CrossRefGoogle Scholar
  14. Zuev, V.E. and Titov, G.A., Optika atmosfery i klimat (Atmospheric Optics and Climate), Tomsk: IOA SO RAN, 1996.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. N. Troshkin
    • 1
  • N. N. Bezuglova
    • 1
  • M. V. Kabanov
    • 2
    • 3
  • V. E. Pavlov
    • 1
  • K. I. Sokolov
    • 2
  • K. Yu. Sukovatov
    • 1
  1. 1.Institute for Water and Environment Problems, Siberian BranchRussian Academy of SciencesBarnaulRussia
  2. 2.Institute of Monitoring of Climatic and Ecological System, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations