Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 1185–1191 | Cite as

Satellite Atmospheric Sounder IRFS-2 1. Analysis of Outgoing Radiation Spectra Measurements

  • A. V. Polyakov
  • Yu. M. Timofeyev
  • Ya. A. Virolainen
  • A. B. Uspensky
  • F. S. Zavelevich
  • Yu. M. Golovin
  • D. A. Kozlov
  • A. N. Rublev
  • A. V. Kukharsky
Space Systems, Remote Sensing Equipment, and Programs

Abstract

The outgoing radiation spectra measured by the IRFS-2 spectrometer onboard Meteor-M no. 2 satellite have been analyzed. Some statistical parameters of more than 106 spectra measured in spring in 2015 have been calculated. The radiation brightness temperature varied from ∼300 K (surface temperature) up to ∼210 K (tropopause temperature). The quite high variability of the longwave measured radiation has been demonstrated. The signal-to-noise ratio distinctively decreases in the shortwave region (higher than 1300 cm–1). Intercomparisons of IR sounders IRFS-2 with IASI and CrIS spectra showed that the discrepancies in the average spectra and their variability do not exceed measurement errors in the spectral region 660–1300 cm–1. A comparison of specially chosen pairs of the simultaneously measured spectra showed that the differences between IRFS-2 and European instruments in the region of the 15-μm CO2 band and the transparency windows 8–12 μm are less than 1 mW/(m2 sr cm–1) and no more than the differences between the two IASI instruments (-A and -B). The differences between measured and simulated spectra are less than 1 mW/(m2 sr cm–1) in the mean part of CO2 band. However, starting from 720 cm–1, values appear that reach 2–4 mW/(m2 sr cm–1). This is caused by the absence of precise information about the surface temperature. Further investigations into the possible reasons for the observed disagreements are required in order to improve both the method of initial processing and the radiative model of the atmosphere.

Keywords

thermal radiation IR radiation satellite sounding of the atmosphere Fourier spectroscopy Fourier spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmus, V.V., Zagrebaev, V.A., Makridenko, L.A., Milekhin, O.E., Solov’ev, V.I., Uspenskii, A.B., Frolov, A.V., and Khailov, M.N., Meteorological satellites based on Meteor-M polar orbiting platform, Russ. Meteorol. Hydrol., 2014, vol. 39, no. 12, pp. 787–794.CrossRefGoogle Scholar
  2. Bondur, V.G. and Krapivin, V.F., Kosmicheskii monitoring tropicheskikh tsiklonov (Cosmic Monitoring of Tropical Cyclones), Moscow: Nauchnyi mir, 2014.Google Scholar
  3. Chalon, G., Cayla, F., and Diebel, D., IASI: An advanced sounder for operational meteorology, in Proceedings of the 52nd International Astronautical Congress of IAF, Toulouse, France, 1–5 October 2001, Bendisch, J, Ed., 2001.Google Scholar
  4. Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F., Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 2009, vol. 9, pp. 6041–6054. doi 10.5194/acp-9-6041-2009CrossRefGoogle Scholar
  5. Golovin, Yu.M., Zavelevich, F.S., Nikulin, A.G., Kozlov, D.A., Monakhov, D.O., Kozlov, I.A., Arkhipov, S.A., Tselikov, V.A., and Romanovskii, A.S., Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth’s atmosphere, Izv., Atmos. Ocean. Phys., 2013, vol. 50, no. 9, pp. 1004–1015.CrossRefGoogle Scholar
  6. Hanel, R. and Conrath, B., Preliminary results from the interferometer experiment on Nimbus III, Science, 1969, vol. 165, no. 3899, pp. 1258–1260.CrossRefGoogle Scholar
  7. Kaplan, L.D., Inference of atmospheric structure from remote radiation measurements, J. Opt. Soc. Am., 1959, vol. 49, no. 10, pp. 1004–1006. doi 10.1364/JOSA.49.001004CrossRefGoogle Scholar
  8. Kondrat’ev, K.Ya. and Timofeev, Yu.M., Meteorologicheskoe zondirovanie atmosfery iz kosmosa (Meteorological Sounding of the Atmosphere from Space), Leningrad: Gidrometeoizdat, 1978.Google Scholar
  9. Kondrat’ev, K.Ya. and Timofeev, Yu.M., Termicheskoe zondirovanie atmosfery so sputnikov (Thermal Sounding of the Atmosphere from Satellites), Leningrad: Gidrometeoizdat, 1970.Google Scholar
  10. Pakhomov, L.A., Timofeev, Yu.M., Shklyarevskii, V.G., and Pokrovskii, O.M., History of thermal sounding by the Meteor satellite, Meteorol. Gidrol., 1971, no. 11, pp. 5–8.Google Scholar
  11. Polyakov, A.V., Timofeev, Yu.M., and Uspenskii, A.B., Temperature–moisture sounding of the atmosphere by data of IKFS-2, a satellite IR sensing device with high spectral resolution, Issled. Zemli Kosmosa, 2009, no. 5, pp. 3–10.Google Scholar
  12. Polyakov, A.V., Timofeev, Yu.M., and Uspenskii, A.B., Possibilities of determination of the content of ozone and other trace gases by data of IKFS-2, a satellite IR sensing device with high spectral resolution, Issled. Zemli Kosmosa, 2010, no. 3, pp. 3–11.Google Scholar
  13. Polyakov, A.V., Timofeev, Yu.M., and Virolainen, Ya.A., Using artificial neural networks in the temperature and humidity sounding of the atmosphere, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 3, pp. 330–336.CrossRefGoogle Scholar
  14. Smith, W.L., Revercomb, H., Bingham, G., Larar, A., Huang, H., Zhou, D., Li, J., Liu, X., and Kireev, S., Technical note: Evolution, current capabilities, and future advances in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere, Atmos. Chem. Phys., 2009, vol. 9, pp. 5563–5574.Google Scholar
  15. Timofeev, Yu.M. and Vasil’ev, A.V., Teoreticheskie osnovy atmosfernoi optiki (Theoretical Foundations of Atmospheric Optics) St. Petersburg: Nauka, 2003.Google Scholar
  16. Uspenskii, A.B. and Rublev, A.N., The current state and prospects of satellite hyperspectral atmospheric sounding, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 892–903.CrossRefGoogle Scholar
  17. Wark, D.Q. and Hilleary, D.T., Atmospheric temperature: Successful test of remote probing, Science, 1969, vol. 165, no. 3899, pp. 1256–1258.CrossRefGoogle Scholar
  18. Zavelevich, F.S., Golovin, Yu.M., Desyatov, A.V., Kozlov, D.A., Matsitskii, Yu.P., Nikulin, A.G., Travnikov, R.I., Romanovskii, A.S., Arkhipov, S.A., and Tselikov, V.A., Technological model of the onboard Fourier spectrometer IKFS-2 for temperature–humidity probing of the atmosphere, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2009, vol. 6, no. 1, pp. 259–266.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Polyakov
    • 1
  • Yu. M. Timofeyev
    • 1
  • Ya. A. Virolainen
    • 1
  • A. B. Uspensky
    • 2
  • F. S. Zavelevich
    • 3
  • Yu. M. Golovin
    • 3
  • D. A. Kozlov
    • 3
  • A. N. Rublev
    • 2
  • A. V. Kukharsky
    • 2
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.State Research Center PlanetaMoscowRussia
  3. 3.State Scientific Centre Keldysh Research CentreMoscowRussia

Personalised recommendations