Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 875–884 | Cite as

Brown Carbon and Black Carbon in the Smoky Atmosphere during Boreal Forest Fires

  • G. I. Gorchakov
  • A. V. Karpov
  • N. V. Pankratova
  • E. G. Semoutnikova
  • A. V. Vasiliev
  • I. A. Gorchakova
Stydying Atmosphere and Oceans from Space


We have investigated the variability of smoke aerosol absorbing ability with variations in the content of brown carbon (BrC) and black carbon (BC). Using monitoring data on radiative characteristics of smoke aerosol at AERONET stations and the spatial distribution of aerosol optical depth (AOD) obtained by the MODIS spectrometer (Terra satellite), we have detected large-scale smokes during boreal forest fires in Russia and Canada (1995–2012). The spatial distribution (50°–70° N, 95°–125° W) and temporal variability (at AERONET station Fort McMurray) of AOD during the smoking of a part of Canada in July 2012 have been analyzed. AOD probability distributions for July 14–18, 2012, and an estimate of aerosol radiative forcing of smoke aerosol at the upper boundary of the atmosphere have been obtained. We have proposed a technique for the diagnostics of BrC and BC in smoke aerosol particles from the spectral dependence of the imaginary part of the refractive index. At a wavelength of 440 nm, the contributions of BrC and BC to the smokeaerosol absorbing abitity can be comparable in magnitude. In many cases, the absorption spectra of smoke aerosol can be adequately approximated by either power or exponential functions. The presence of BrC in smoke-aerosol particles highly extends the variety of observed absorption spectra in a smoky atmosphere and spectral dependences of single scattering albedo. In the spectral range of 440–1020 nm, the radiative characteristics of smoke aerosol are largely contributed by its fine mode.


smoke aerosol brown carbon black carbon absorption spectra aerospace monitoring aerosol radiative forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergstrom, R.W., Russell, P.B., and Hignett, P., Wavelength dependence the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 2002, vol. 59, no. 3, pp. 567–577.CrossRefGoogle Scholar
  2. Bergstrom, R.W., Pilewskie, P., Russel, P.B., Redermann, J., Bond, T.C., Quinn, P.K., and Sierau, B., Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 2007, vol. 7, pp. 5937–5943.CrossRefGoogle Scholar
  3. Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048.CrossRefGoogle Scholar
  4. Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091.CrossRefGoogle Scholar
  5. Bondur, V.G. and Ginzburg, A.S., Emission of carbonbearing gases and aerosols from natural fires on the territory of Russia based on space monitoring, Dokl. Earth Sci., 2016, vol. 466, no. 2, pp. 148–152.CrossRefGoogle Scholar
  6. Chon, C.C.-K., Chen, W.-N., Chang, S.-Y., Chen, T.-K., and Huang, S.-H., Specific absorption cross-section and elemental carbon content of carbon aerosols, Geophys. Res. Lett., 2005, vol. 32, L21808.CrossRefGoogle Scholar
  7. Chubarova, N.E., Gorbarenko, E.V., Nezval’, E.I., and Shilovtseva, O.A., Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002, and 2010 in the region of Moscow, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 729–738.Google Scholar
  8. Chubarova, N., Nezval’, Y., Sviridenkov, M., Smirnov, A., and Slutsker, I., Smoke aerosol and its radiative effects during extreme fire event over central Russia in summer 2010, Atmos. Meas. Tech., 2012, vol. 5, pp. 557–568.CrossRefGoogle Scholar
  9. Chyleck, P.V., Srivastava, V., Pinnick, R.G., and Wang, R.T., Scattering of electromagnetic waves by composite spherical particles. Experiment and effective medium approximations, Appl. Opt., 1998, vol. 27, no. 12, pp. 2396–2404.CrossRefGoogle Scholar
  10. Dubovick, O., Holben, B., Eck, T.F., Smirnov, A.V., Kaufman, Y.J., King, M.O., Tanre, D., and Slutsker, I., Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 2002, vol. 59, no. 3, pp. 590–608.CrossRefGoogle Scholar
  11. Dubovik, O. and King, M.D., A flexible inversion algorithm for the retrieval of aerosol optical properties from sun and sky radiance measurements, J. Geophys. Res., 2000, vol. 105, no. D16, pp. 20673–20696.CrossRefGoogle Scholar
  12. Eck, T.F., Holben, B.N., Reid, J.S., Sinynk, A., Hyer, E.J., O’Neil, N.T., Shaw, G.E., Vande, CastleJ.R., Chapin, F.S., Dubovick, O., Smirnov, A.V., Vermote, E., Schafer, J.S., Giles, D., Slutsker, I., and Sonokine, M., and Newcomb, W.W., Optical properties of boreal region biomass burning aerosols in Central Alaska and seasonal variation of aerosol optical depth at an arctic coastal site, J. Geophys. Res., 2009, vol. 114, D11201.CrossRefGoogle Scholar
  13. Elanskii, N.F., Mokhov, I.I., Belikov, I.B., Berezina, E.V., Elokhov, A.S., Ivanov, V.A., Pankratova, N.V., Postylyakov, O.V., Safronov, A.N., Skorokhod, A.I., Shumskii, and R.A., Gaseous admixtures in the atmosphere over Moscow during the 2010 summer, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 672–681.CrossRefGoogle Scholar
  14. Feng, Y., Ramanathan, V., and Katamarthi, V.R., Brown carbon: A significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 2013, vol. 13, pp. 8607–8621.CrossRefGoogle Scholar
  15. Fokeeva, E.V., Safronov, A.N., Rakitin, V.S., Yurganov, L.N., Grechko, E.I., and Shumskii, R.A., Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 682–699.CrossRefGoogle Scholar
  16. Fuller, K.A., Malm, W.C., and Kreidenweis, S.M., Effects of mixing on extinction by carbonaceous particles, J. Geophys. Res., 1999, vol. 104, no. D13, pp. 15941–15954.CrossRefGoogle Scholar
  17. Golitsyn, G.S., Gorchakov, G.I., Grechko, E.I., Semutnikova, E.G., Rakitin, V.S., Fokeeva, E.V., Karpov, A.V., Kurbatov, G.A., Baikova, E.S., and Safrygina, T.P., Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1666–1672.CrossRefGoogle Scholar
  18. Gorchakov, G.I., Anikin, P.P., Volokh, A.A., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Ponomareva, T.Ya., Semutnikova, E.G., Sviridenkov, M.A., and Shukurov, K.A., Study of the composition of the atmospheric smoke screen over the Moscow region, Dokl. Earth Sci., 2003, vol. 390, no. 4, pp. 562–565.Google Scholar
  19. Gorchakov G.I., Anikin P.P., Volokh A.A., Emilenko A.S., Isakov A.A., Kopeikin V.M., Ponomareva T.Ya., Semutnikova E.G., Sviridenkov M.A., Shukurov K.A. Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer–fall season of 2002, Izv., Atmos. Ocean. Phys., 2004, vol. 40, no. 3, pp. 323–336.Google Scholar
  20. Gorchakov, G.I., Semutnikova, E.G., Kopeikin, V.M., Ponomareva, T.Ya., Karpov, A.V., Kurbatov, G.A., and Safrygina, T.P., Meteorological conditions during smokes in the Moscow region in summr 2010: Blocking anticyclone, temperature inversions, and urban heat island, in Estestvennye i antropogennye aerozoli–VII (Natural and Anthropogenic Aerosols–VII), St. Petersburg: SPbGU, 2011a, pp. 288–292.Google Scholar
  21. Gorchakov, G.I., Sviridenkov, M.A., Semutnikova, E.G., Chubarova, N.E., Kholben, B.N., Smirnov, A.V., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Lezina, E.A., and Zadorozhnaya, O.S., Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010, Dokl. Earth Sci., 2011b, vol. 437, no. 2, pp. 513–517.CrossRefGoogle Scholar
  22. Gorchakov, G.I., Semutnikova, E.G., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Kurbatov, G.A., Ponomareva, T.Ya., and Sokolov, A.V., The Moscow smoke haze of 2010: Extreme aerosol and gaseous air pollution of in the Moscow region, Opt. Atmos. Okeana, 2011c, vol. 24, no. 6, pp. 452–458.Google Scholar
  23. Gorchakov, G., Semoutnikova, E., Karpov, A., and Lezina, E., Air pollution in the Moscow megacity, in Advanced Topics in Environmental Health and Air Pollution: Case Studies, Rijeka: Intech, 2011d, pp. 211–236.Google Scholar
  24. Gorchakov, G.I., Sitnov, S.A., Sviridenkov, M.A., Semoutnikova, E.G., Emilenko, A.S., Isakov, A.A., Kopeikin, V.M., Karpov, A.V., Gorchkova, I.A., Verichev, K.S., Kurbatov, G.A., and Ponomareva, T.Ya., Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012, Int. J. Remote Sens., 2014, vol. 35, pp. 5698–5721.Google Scholar
  25. Gorchakov, G.I., Kadygrov, E.N., Kunitsyn, V.E., Zakharov, V.I., Semutnikova, E.G., Karpov, A.V., Kurbatov, G.A., Miller, E.A., and Sitanskii, S.I., The specific charge of saltation sand particles in arid territories, Dokl. Earth Sci., 2014, vol. 456, no. 2, pp. 700–704.CrossRefGoogle Scholar
  26. Gorchakova, I.A. and Mokhov, I.I., The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010, Izv., Atmos. Ocean. Phys., 2012, vol. 48, no. 5, pp. 496–503.CrossRefGoogle Scholar
  27. Haywood, J.M. and Ramaswamy, V., Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 1998, vol. 103, no. D06, pp. 6043–6058.CrossRefGoogle Scholar
  28. Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, N., Lavenu, F., Jankowiak, I., and Smirnov, A., Aeronet—a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 1998, vol. 66, pp. 1–16.CrossRefGoogle Scholar
  29. Kaufman, Y.J., Tanre, D., Gordon, H.R., Vermote, E.F., Chu, A., and Holben, B.N., Operational remote sensing of aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 1997, vol. 102, no. D14, pp. 17051–17067.CrossRefGoogle Scholar
  30. Kirchstetter, T.V., Novakov, T., and Hobbs, P.V., Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res., 2004, vol. 109.Google Scholar
  31. Kozlov, V.S., Yansheva, E.P., Terpugova, S.A., Panchenko, M.V., Chertnov, D.G., and Shmargunov, V.P., Optical–microphysical properties of smoke haze from Siberian forest fires in summer 2012, Int. J. Remote Sens., 2014, vol. 35, no.15, pp. 5722–5741.Google Scholar
  32. Kuznetsova, I.N., Zvyagintsev, A.M., and Semutnikova, E.G., Ecological effects of the weather anomaly in summer 2010, in Analiz uslovii anomal’noi pogody na territorii Rossii letom 2010 goda (Analysis of Anomalous Weather Conditions in Russia in Summer 2010), Moscow: Triada, 2010, pp. 58–64.Google Scholar
  33. Lewis, K., Arnott, W.P., Moosmuller, H., and Wold, C.E., Strong spectral variations of biomass smoke light absorption and single scattering albedo observed with a novel dual wavelength photoacoustic instrument, J. Geophys. Res., 2008, vol. 113, D16203.CrossRefGoogle Scholar
  34. Mokhov, I.I., Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 653–660.CrossRefGoogle Scholar
  35. Mokhov, I.I. and Gorchakova, I.A., Radiation and temperature effects of summer fires in 2002 in the Moscow region, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 160–163.Google Scholar
  36. Panchenko, M.V., Zhuravleva, T.B., Kozlov, V.S., Nasrtdinov, I.M., Pol’kin, V.V., Terpugova, S.A., and Chernov, D.G., Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 2, pp. 104–111.CrossRefGoogle Scholar
  37. Sakerin, S.M., Bedareva, T.M., Zhuravleva, T.B., Kabanov, D.M., Nasrtdinov, I.M., and Turchinovich, Ya.S., Aerosol radiative characteristics during smoke mist in Siberia, in Proc. Int. Symp. “Atmospheric Radiation and Dynamics” (ISARD-2013), St. Petersburg, 2013, p. 67.Google Scholar
  38. Salomonson, V.V., Barnes, W.L., Maymon, P.W., Montgomery, H.E., and Ostrow, H., MODIS, advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geosci. Remote Sens., 1989, vol. 27, pp. 145–153.CrossRefGoogle Scholar
  39. Schnaiter, M., Linke, C., Mohler, O., Naumanm, K.-H., Saathoff, H., Schmidt, H., Wagner, R., and Wehner, B., Absorption amplification of black carbon internally mixed with secondary organic aerosol, J. Geophys. Res., 2005, vol. 110, D19204.CrossRefGoogle Scholar
  40. Shakina, N.P., Ivanova, A.R., Birman, B.A., and Skriptunova, E.N., Blocking: Conditions of the summer 2010 in the context of present-day knowledge, in Analiz uslovii anomal’noi pogody na territorii Rossii letom 2010 goda (Analysis of Anomalous Weather Conditions in Russia in Summer 2010), Moscow: Triada, 2010, pp. 6–21.Google Scholar
  41. Shifrin, K.S., Rasseyanie sveta v mutnoi srede (Light Scattering in Turbid Medium), Moscow: Gostekhteorizdat, 1951.Google Scholar
  42. Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., Karpov, A.V., Evolution and radiation effects of the extreme smoke pollution over the European part of Russia in the summer of 2010, Dokl. Earth Sci., 2012, vol. 445, no. 5, pp. 1197–1203.CrossRefGoogle Scholar
  43. Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., Gorchakova, I.A., Karpov, A.V., and Kolesnikova, A.B., Aerospace monitoring of smoke aerosol over the European part of Russia in the period of massive forest and peatbog fires in July–August of 2010, Atmos. Oceanic Opt., 2013a, vol. 26, no. 4, pp. 265–280.CrossRefGoogle Scholar
  44. Sitnov, S.A., Gorchakov, G.I., Sviridenkov, M.A., Kopeikin, V.M., Ponomareva, T.Ya., and Karpov, A.V., The effect of atmospheric circulation on the evolution and radiative forcing of smoke aerosol over European Russia during the summer of 2010, Izv., Atmos. Ocean. Phys., 2013b, vol. 49, no. 9, pp. 1006–1018.CrossRefGoogle Scholar
  45. Sklyadneva, T.K., Ivlev, G.A., Belan, B.D., Arshinov, M.Yu., and Simonenkov, D.V., Radiation regime in Tomsk during some haze, Opt. Atmos. Okeana, 2015, vol. 28, no. 3, pp. 215–222.Google Scholar
  46. Urbach, F., The long-wavelength edge of photographic sensitivity and electronic absorption of solids, Phys. Rev., 1962, vol. 125, no. 5, pp. 1324–1329.Google Scholar
  47. Zuev, V.E. and Krekov, G.M., Opticheskie modeli atmosfery (Optical Models of the Atmosphere), Leningrad: Gidrometeoizdat, 1986.Google Scholar
  48. Zvyagintsev, A.M., Blum, O.B., Glazkova, A.A., Kotel’-nikov, S.N., Kuznetsova, I.N., Lapchenko, V.A., Lezina, E.A., Miller, E.A., Milyaev, V.A., Popikov, A.P., Semutnikova, E.G., Tarasova, O.A., and Shalygina, I.Yu., Air pollution over European Russia and Ukraine under the hot summer conditions of 2010, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 699–707.CrossRefGoogle Scholar
  49. van Donkelaar, A., Martin, R.V., Levy, R.C., Silva, M.A., Krzyzanowski, M., Chubarova, N.E., Semutnikova, E.G., and Cohen, A.J., Satellite-based estimates of ground-level fine particle matter during extreme events: A case study of the Moscow fires in 2010, Atmos. Environ., 2011, vol. 45, pp. 6225–6232.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. I. Gorchakov
    • 1
  • A. V. Karpov
    • 1
  • N. V. Pankratova
    • 1
  • E. G. Semoutnikova
    • 2
  • A. V. Vasiliev
    • 3
  • I. A. Gorchakova
    • 1
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations