Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 9, pp 996–1006 | Cite as

Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East

Physical Bases and Methods of Studying the Earth from Space

Abstract

Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.

Keywords

satellite remote sensing atmospheric correction AERONET ocean coloring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksanin, A.I., Kachur, V.A., and Salyuk, P.A., Processing of measurements by the ASD hyperspectroradiometer ASD for verifying satellite estimates of oceanic bioparameters, Sovremennye metody i sredstva okeanologicheskikh issledovanii: Mat. XIII Mezhdun. nauch.-tekh. konf. “MSOI-2013" (Modern Methods and Tools of Oceanographic Studies: Proceedings of the XIII International Scientific and Technical Conference “MSOI-2013”), Moscow: APR, 2013, pp. 96–100.Google Scholar
  2. Baith, K., Lindsay, R., Fu, G., and McClain, C.R., Data analysis system developed for ocean color satellite sensors, EOS, Trans. Am. Geophys. Union, 2001, vol. 82, no. 18, p. 202.CrossRefGoogle Scholar
  3. Bukin, O.A., Shmirko, K.A, Maior, A.Yu., et al., Specific features of the size distribution of atmospheric aerosol in the continent–ocean transition zone, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 2, pp. 178–183.CrossRefGoogle Scholar
  4. Chang, G.S. and Gould, R.W., Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurement, Opt. Exp., 2006, vol. 14, no. 22, pp. 10149–10163.CrossRefGoogle Scholar
  5. Gordon, H.R. and Voss, K.J., MODIS normalized waterleaving radiance. Algorithm theoretical basis document (MOD 18). Version 5, Department of Physics, University of Miami, Coral Gables, FL, 2004.Google Scholar
  6. Goyens, C., Jamet, C., and Ruddick, K., A hybrid MUMM NIR corrected algorithm for the atmospheric correction of turbid waters, in Abstracts of the First International Ocean Colour Science Meeting 2013, Darmstadt, Germany, 2013, pp. 105–106. http://iocs.ioccg.org/wp-content/uploads/all-abstracts-alphabetical-order.pdf.Google Scholar
  7. Goyens, C., Jamet, C., and Schroeder, T., Comparison of four atmospheric correction algorithms for MODISAqua images over contrasted coastal waters, Remote Sens. Environ., 2013, no. 131, pp. 63–75.CrossRefGoogle Scholar
  8. Jamet, C., Loisel, H., Kuchinke, C.P., Ruddick, K., Zibordi, G., and Feng, H., Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements, Remote Sens. Environ., 2011, no. 115, pp. 1955–1965.CrossRefGoogle Scholar
  9. Kopelevich, O.V., Burenkov, V.I., and Sheberstov, S.V., Development and use of regional algorithms for calculating of bio–optical characteristics of Russian seas from satellite color scan data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2006. T. 2. S. 99–105.Google Scholar
  10. Korchemkina, E.N., Shibanov, E.B., and Li, M.E., Improved techniques of atmospheric correction for remote investigations of coastal areas of the Black Sea, Issled. Zemli Kosmosa, 2009, no. 6, pp. 24–30.Google Scholar
  11. Lee, B., Ahn, J.H., Park, Y.-J., and Kim, S.-W., Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm, Korean J. Remote Sens., 2013, vol. 29, no. 2, pp. 173–182.CrossRefGoogle Scholar
  12. Morozov, E., Korosov, A., Pozdnyakov, D., Pettersson, L., and Sychev, V., A new area-specific bio-optical algorithm for the Bay of Biscay and assessment of its potential for SeaWiFS and MODIS/Aqua data merging, Int. J. Remote Sens., 2010, vol. 31, pp. 6541–6565.CrossRefGoogle Scholar
  13. Mueller, J.L., Fargion, G.S., and McClain, C.R., Ocean optics protocols for satellite ocean color sensor validation, Rev. 1., v. III: Radiometric measurements and data analysis prot. NASA/TM-2003-21641/Rev-V. Greenbelt, Maryland: NASA Goddard Space Flight Center, 2003.Google Scholar
  14. Ruddick, K.G., Ovidio, F., and Rijkeboer, M., Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Opt., 2000, vol. 39, pp. 897–912.CrossRefGoogle Scholar
  15. Ruddick, K.G., Cauwer, V.D., and Park, Y.-J., Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters, Limnol. Oceanogr., 2001, vol. 51, pp. 1167–1179.CrossRefGoogle Scholar
  16. Salyuk, P., Bukin, O., Alexanin, A., Pavlov, A., Mayor, A., Shmirko, K., Akmaykin, D., and Krikun, V., Optical properties of peter the great bay waters compared with satellite ocean colour data, Int. J. Remote Sens., 2010, vol. 31, nos. 17–18, pp. 4651–4664.CrossRefGoogle Scholar
  17. Schroeder, T., Behnert, I., Schaale, M., Fischer, J., and Doerffer, R., Atmospheric correction algorithm for MERIS above case-II waters, Int. J. Remote Sens., 2007, vol. 28, pp. 1469–1486.CrossRefGoogle Scholar
  18. Shtraikhert, E.A., Zakharkov, S.P., and D’yakov, S.E., Correction of satellite estimates on the basis of shipboard measurements of the chlorophyll-a concentration for the Sea of Japan, Issled. Zemli Kosmosa, 2006, no. 6, pp. 72–82.Google Scholar
  19. Volpe, G., Santoleri, R., Vellucci, V., Riberad’Alcalà, M., Marullo, S., and D’Ortenzio, F., The colour of the Mediterranean Sea: Global versus regional bio–optical algorithms evaluation and implication for satellite chlorophyll estimates, Remote Sens. Environ., 2007, vol. 107, pp. 625–638.CrossRefGoogle Scholar
  20. Wang, M., Remote sensing of ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations, Appl. Opt., 2007, vol. 46, pp. 1535–1547.CrossRefGoogle Scholar
  21. Wang, M. and Shi, W., The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing, Opt. Exp., 2007, vol. 15, pp. 15722–15733.CrossRefGoogle Scholar
  22. Wang, M.H., Atmospheric correction for remotely-sensed ocean-colour products, Report of the International Ocean-Colour Coordinating Group, Dartmouth, Canada, 2010, no. 10.Google Scholar
  23. Wang, M., Shi, W., and Jiang, L., Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid Western Pacific region, Opt. Exp., 2012, vol. 20, pp. 741–753.CrossRefGoogle Scholar
  24. Zibordi, G., Holben, B., Slutsker, I., Giles, D., Alimonte, D.D., Mélin, F., Berthon, J.-F., Vandemark, D., Feng, H., Schuster, G., Fabbri, B.E., Kaitala, S., and Seppälä, J., AERONET-OC: A network for the validation of ocean color primary radiometric products, J. Atmos. Oceanic Technol., 2009, vol. 26, no. 8, pp. 1634–1651.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Automation and Control Processes, Far East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations