Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 8, pp 813–846 | Cite as

Tidal Amplitude Delta Factors and Phase Shifts for an Oceanic Earth



M.S. Molodenskiy’s problem, which describes the state of an elastic self-gravitating compressible sphere, is generalized to the case of a biaxial hydrostatically equilibrium rotating elliptical inelastic shell. The system of sixth-order equations is supplemented with corrections due to the relative and Coriolis accelerations. The ordinary and load Love numbers of degree 2 are calculated with allowance for their latitude dependence and dissipation for different models of the Earth’s structure (the AK135, IASP91, and PREM models). The problem is solved by Love’s method. The theoretical amplitude delta factors and phase shifts of second-order tidal waves for an oceanic Earth are compared with their most recent empirical counterparts obtained by the GGP network superconducting gravimeters. In particular, it is shown that a good matching (up to the fourth decimal place) of the theoretical and observed amplitude factors of semidiurnal tides does not require the application of the nonhydrostatic theory.


tidal amplitude delta factors Love numbers Earth tidal prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bullen, K.E., The Earth’s Density, Dordrecht: Springer, 1975; Moscow: Mir, 1978.Google Scholar
  2. Carrθre, L., Lyard, F., Cancet, M., Guillot, A., and Roblou, L., FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry, in Proc. of Meeting “20 Years of Altimetry”, Venice, 2012.Google Scholar
  3. Dehant, V., Defraigne, P., and Wahr, J.M., Tides for a convective earth, J. Geophys. Res., 1999, vol. 104, no. B1, pp. 1035–1058.CrossRefGoogle Scholar
  4. Dziewonski, A.M. and Anderson, D.L., Preliminary reference earth model, Phys. Earth Planet. Int., 1981, vol. 25, pp. 297–356.CrossRefGoogle Scholar
  5. Gegout, P., Dudy, W., and Boehm, J., Practical numerical computation of love numbers and applications, in WG1 and WG2 Workshop of the COST Action ES0701, 16–17 November, 2010, Vienna, 2010.Google Scholar
  6. Geissler, W.H., Kind, R., and Yuan, X., Upper mantle and lithospheric heterogeneities in Central and Eastern Europe seen by teleseismic receiver functions, Geophys. J. Int., 2008, vol. 174, pp. 351–376.CrossRefGoogle Scholar
  7. Jentzsch, G., Earth tides and Ocean tidal loading in tidal phenomena, in Tidal Phenomena, Wilhelm, H., Zόrn, W., and Wenzel, H.G., Eds., Berlin: Springer, 1997, pp. 145–172.CrossRefGoogle Scholar
  8. Kennett, B.L.N. and Engdahl, E.R., Travel times for global earthquake location and phase identification, Geophys. J. Int., 1991, vol. 105, pp. 429–465.CrossRefGoogle Scholar
  9. Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 1995, vol. 122, pp. 108–124.CrossRefGoogle Scholar
  10. Molodenskii, M.S., Elastic tides, free nutation, and some problems of the Earth’s structure, Tr. Geofiz. inst. Akad. Nauk SSSR, 1953, no. 19, pp. 3–52.Google Scholar
  11. Molodenskii, M.S. and Kramer, M.V., Love’s numbers for static terrestrial tides of the second and third orders, in Zemnye prilivy i nutatsiya Zemli (Terrestrial Tides and the Earth’s Nutations), Moscow: Akad. Nauk SSSR, 1961, p. 26.Google Scholar
  12. Molodenskii, S.M., On Green’s function for the equation of elastic spheroidal deformations of the Earth, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1976, no. 11.Google Scholar
  13. Molodenskii, S.M., On the influence of horizontal inhomogeneities of the mantle on tidal wave amplitudes, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1977, no. 2, pp. 3–8.Google Scholar
  14. Molodenskii, S.M., Estimate for the deviation of elastic terrestrial tides from static ones, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1978, no. 12.Google Scholar
  15. Molodenskii, S.M., Prilivy, nutatsiya i vnutrennee stroenie Zemli (Tides, Nutation, and the Earth’s Inner Structure), Moscow: IFZ AN SSSR, 1984.Google Scholar
  16. Molodenskii, S.M. and Kramer, M.V., Influence of largescale horizontal inhomogeneities of the mantle on terrestrial tides, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1980, no. 1, pp. 3–20.Google Scholar
  17. Montagner, J.P. and Kennett, B.L.N., How to reconcile body-wave and normal-mode reference earth models?, Geophys. J. Int., 1996, vol. 125, pp. 229–248.CrossRefGoogle Scholar
  18. Pagiatakis, S.D., The response of a realistic Earth to ocean tide loading, Geophys. J. Int., 1990, vol. 103, pp. 541–560.CrossRefGoogle Scholar
  19. Pertsev, B.P., Influence of near-field sea tides on terrestrial tide observations, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1976, no. 1, pp. 13–22.Google Scholar
  20. Schuller, K., Theoretical basis for Earth tide analysis with the new ETERNA34-ANA-V4.0 program, Bull. Inf. Marιes Terrestres, 2015, vol. 149, pp. 12024–12061.Google Scholar
  21. Smith, M.L., The scalar equations of infinitesimal elastic gravitational motion for a rotating, slightly elliptical Earth, Geophys. J. R. Astron. Soc., 1974, vol. 37, pp. 491–526.CrossRefGoogle Scholar
  22. Smith, M.L., Translational inner core oscillations of a rotating, slightly elliptical Earth, J. Geophys. Res., 1976, vol. 81, pp. 3055–3065.CrossRefGoogle Scholar
  23. Smith, M.L., Wobble and nutation of the Earth, Geophys. J. R. Astron. Soc., 1977, vol. 50, pp. 103–140.CrossRefGoogle Scholar
  24. Spiridonov, E.A., ATLANTIDA3.1_2014: Software for analyzing data of terrestrial tide observations, Nauka Tekhnol. Razrab., 2014, vol. 93, no. 3, pp. 3–48.Google Scholar
  25. Spiridonov, E., Vinogradova, O., Boyarskiy, E., and Afanasyeva, L., Atlantida3.1_2014 for Windows: A software for tidal prediction, Bull. Inf. Marιes Terrestres, 2015a, no. 149, pp. 12063–12082.Google Scholar
  26. Spiridonov, E.A., ATLANTIDA 3.1_2014: Software for calculating the parameters of terrestrial tides, Certificate of state registration computer programs no. 2015619567, September 8, 2015, 2015b.Google Scholar
  27. Spiridonov, E.A., Corrections of Love’s number for relative and Coriolis accelerations, Geofiz. Protsessy Biosfera, 2016a, vol. 25, no. 1, pp. 73–81.Google Scholar
  28. Spiridonov, E.A., Amplitude delta-factors of the second order and their latitudinal dependence, Geol. Geofiz., 2016b, no. 4, pp. 796–807.Google Scholar
  29. Spiridonov, E.A., How dissipation and selection of the Earth model influence on the quality of the Earth tidal prediction, Seism. Instrum., 2016c, vol. 52, no. 3, pp. 224–232.CrossRefGoogle Scholar
  30. Spiridonov, E.A. and Vinogradova, O.Yu., Results of complex simulation of the oceanic gravimetric effect, Seism. Prib., 2017, no. 1, pp. 66–80.Google Scholar
  31. Vinogradova, O.Yu., Oceanic tidal loads near the European coast calculated from Green’s functions, Izv., Phys. Solid Earth, 2012, vol. 48, nos. 7–8, pp. 572–586.CrossRefGoogle Scholar
  32. Vinogradova, O.Yu. and Spiridonov, E.A., Comparative analysis of oceanic corrections to gravity calculated from the PREM and IASP91 models, Izv., Phys. Solid Earth, 2012, vol. 48, no. 2, pp. 162–170.CrossRefGoogle Scholar
  33. Vinogradova, O.Yu. and Spiridonov, E.A., Some features of TPEX/POSEIDON data, in Application in Gravimetry: Ref. Frames for Applications in Geosciences, International Association of Geodesy Symposia 138, Altamimi, Z. and Collilieux, X., Eds., Berlin: Springer, 2013, pp. 229–235.Google Scholar
  34. Wahr, J.M., The tidal motions of a rotating, elliptical, elastic and oceanless Earth, Ph.D. Dissertation, Boulder: University of Colorado, 1979.Google Scholar
  35. Wahr, J.M., Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astron. Soc., 1981, no. 64, pp. 677–703.CrossRefGoogle Scholar
  36. Wang, R., Tidal deformations on a rotating, spherically asymmetric, viscoelastic and laterally heterogeneous Earth, Ph.D. Dissertation, Frankfurt, 1991.Google Scholar
  37. Zharkov, V.N. and Molodenskii, S.M., On corrections of the dynamic shear modulus for Love’s numbers, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1977, no. 5, pp. 17–20.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations