Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 8, pp 757–768 | Cite as

Calculation of Long-Term Averages of Surface Air Temperature Based on Insolation Data

Article
  • 2 Downloads

Abstract

The solar radiation coming to the Earth’s ellipsoid is considered without taking into account the atmosphere on the basis of the astronomical ephemerides for the time interval from 3000 BC to 3000 AD. Using the regression equations between the Earth’s insolation and near-surface air temperature, the insolation annual and semiannual climatic norms of near-surface air temperature for the Earth as a whole and the hemispheres are calculated in intervals of 30 years for the period from 2930 BC to 2930 AD with 100 and 900- to 1000-year time steps. The analysis shows that the annual insolation rates of the near-surface air temperature of the Earth and the hemispheres decrease at all intervals. The semiannual insolation rates of the near-surface air temperature increase in winter and decrease in summer. This means that the seasonal difference decreases. The annual and semiannual rates of insolation near-surface air temperature of the Earth increase in the equatorial and decrease in the polar regions; the latitudinal contrast increases. The interlatitudinal gradient is higher in the Southern Hemisphere. It practically does not change in winter and increases in summer, most strongly in the Southern Hemisphere.

Keywords

climate change insolation surface air temperature celestial-mechanical processes interlatitudinal gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, G.V., Manifestation and amplification of global warming in the Arctic, Fundam. Prikl. Klimatol., 2015, no. 1, pp. 11–26.Google Scholar
  2. Berger, A.L., Long-term variations of daily insolation and quaternary climatic changes, J. Atmos. Sci., 1978a, vol. 35, no. 9, pp. 2362–2367.CrossRefGoogle Scholar
  3. Berger, A.L., Long-term variations of caloric insolation resulting from the Earth’s orbital elements, Quat. Res., 1978b, vol. 9, pp. 139–167.CrossRefGoogle Scholar
  4. Berger, A.L. and Loutre, M.F., Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 1991, vol. 10, pp. 297–317.CrossRefGoogle Scholar
  5. Berger, A., Loutre, M.F., and Yin, Q., Total irradiation during any time interval of the year using elliptic integrals, Quat. Sci. Rev., 2010, vol. 29, pp. 1968–1982. doi 10.1016/j.quascirev.2010.05.07CrossRefGoogle Scholar
  6. Bertrand, C. and Van Ypersele, J.P., Potential role solar variability as an agent for climate change, Clim. Change, 1999, vol. 43, pp. 387–411.CrossRefGoogle Scholar
  7. Bertrand, C., Loutre, M.F., and Berger, A., High frequency variations of the Earth’s orbital parameters and climate change, Geophys. Res. Lett., 2002a, vol. 29, no. 18, 1893. doi 10.1029/2002GL015622CrossRefGoogle Scholar
  8. Bertrand, C., Van Ypersele, J.B., and Berger, A., Are natural climate forcings able to counteract the projected anthropogenic global, Clim. Change, 2002b, vol. 55, pp. 413–427.CrossRefGoogle Scholar
  9. Borisenkov, E.P., Tsvetkov, A.V., and Agaponov, S.V., On some characteristics of insolation changes in the past and the future, Clim. Change, 1983, no. 5, pp. 237–244.CrossRefGoogle Scholar
  10. Borisenkov, E.P., Tsvetkov, A.V., Eddy, J.A., Combined effects of Earth orbit perturbations and solar activity on terrestrial insolation. Pt. I: Sample days and annual mean values, J. Atmos. Sci., 1985, vol. 42, no. 9, pp. 933–940.CrossRefGoogle Scholar
  11. Bretagnon, P., Théorie du movement de l’ensemble des planètes. Solution VSOP82, Astron. Astrophys., 1982, vol. 114, pp. 278–288.Google Scholar
  12. Brouwer, D. and Van Woerkom, A.J.J., The secular variation of the orbital elements of the principal planets, Astron. Pap., 1950, vol. 13, pp. 81–107.Google Scholar
  13. Fedorov, V.M., Periodic perturbations and small variations of the solar climate of the Earth, Dokl. Earth Sci., 2014, vol. 457, no. 1, pp. 869–872. doi 10.7868/S0869565214200213CrossRefGoogle Scholar
  14. Fedorov, V.M., Spatial and temporal variations in solar climate of the Earth in the present epoch, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 8, pp. 779–791.CrossRefGoogle Scholar
  15. Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S., Lieske, J.H., Ostro, S.J., Standish, E.M., and Wimberly, R.N., JPL’s on-line solar system data service, Bull. Am. Astron. Soc., 1996, vol. 28, no. 3, p. 1158.Google Scholar
  16. Jones, P.D., New, M., Parker D.E., Martin S., and Rigor I.G., Surface air temperature and its variations over the last 150 years, Rev. Geophys., 1999, vol. 37, pp. 173–199. doi 10.1029/1999RG900002CrossRefGoogle Scholar
  17. Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., and Morice, C.P., Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res., 2012, vol. 117, no. D5. doi 10.1029/2011JD017139Google Scholar
  18. Kopp, G. and Lean, J., A new lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 2011, vol. 37, L01706. doi 10.1029/2010GL045777Google Scholar
  19. Lean, J., Beer, J., and Bradley, R., Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Lett., 1995, vol. 22, no. 23, pp. 3195–3198.CrossRefGoogle Scholar
  20. Loutre, M.F., Berger, A., Bretagnon, E., and Blanc, P.-L., Astronomical frequencies for climate research at the decadal to century time scale, Clim. Dyn., 1992, vol. 7, pp. 181–194.CrossRefGoogle Scholar
  21. Milankovich, M., Matematicheskaya klimatologiya i astronomicheskaya teoriya kolebanii klimata (Mathematical Climatology and Astronomical Theory of Climate Fluctuations), Moscow–Leningrad: GONTI, 1939.Google Scholar
  22. Monin, A.S., Vvedenie v klimatologiyu (Introduction to Climatology), Leningrad: Gidrometeoizdat, 1982.Google Scholar
  23. Monin, A.S. and Shishkov, Yu.A., Climate as a problem of physics, Phys.-Usp., 2000, vol 43, no. 4, pp. 381–406.CrossRefGoogle Scholar
  24. Sharaf, Sh.G. and Budnikova, N.A., Secular changes in the Earth’s orbit and astronomical theory of climate fluctuations, Tr. Inst. Teor. Astron. Akad. Nauk SSSR, 1969, vol. 14, pp. 48–84.Google Scholar
  25. Standish, E.M., Orientation of the JPL ephemerides, DE200/LE200, to the dynamical equinox of J2000, Astron. Astrophys., 1982, vol. 114, pp. 297–302.Google Scholar
  26. Vernecar, A.D., Long-Period Global Variations of Incoming Solar Radiation, vol. 12, Am. Meteorol. Soc., 1972.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations