Izvestiya, Atmospheric and Oceanic Physics

, Volume 53, Issue 8, pp 847–858 | Cite as

Analysis of Rhythms in Experimental Signals

  • A. V. Desherevskii
  • V. I. Zhuravlev
  • A. N. Nikolsky
  • A. Ya. Sidorin


We compare algorithms designed to extract quasiperiodic components of a signal and estimate the amplitude, phase, stability, and other characteristics of a rhythm in a sliding window in the presence of data gaps. Each algorithm relies on its own rhythm model; therefore, it is necessary to use different algorithms depending on the research objectives. The described set of algorithms and methods is implemented in the WinABD software package, which includes a time-series database management system, a powerful research complex, and an interactive data-visualization environment.


rhythm hidden periodicity parameter estimation algorithm WinABD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T., The Statistical Analysis of Time Series, New York: John Wiley and Sons, 1971; Moscow: Mir, 1976.Google Scholar
  2. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Some filtering algorithms for geophysical temporal series, Izv., Phys. Solid Earth, 1996, vol. 32, no. 2, pp. 138–148.Google Scholar
  3. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Spectral–temporal features of seasonal variations in apparent resistivity, Izv., Phys. Solid Earth, 1997a, vol. 33, no. 3, pp. 217–226.Google Scholar
  4. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Flicker noise structure in the time realizations of geophysical fields, Izv., Phys. Solid Earth, 1997b, vol. 32, no. 7, pp. 515–529.Google Scholar
  5. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems of the Method for Estimating the Average Seasonal Functions for Geophysical Data), Moscow: OIFZ RAN, 1999.Google Scholar
  6. Deshcherevskii, A.V. and Lukk, A.A., Identification of regular components in time variations of geophysical parameters by the method of decomposition into nonharmonic components, Vulkanol. Seismol., 2002, no. 5, pp. 65–78.Google Scholar
  7. Deshcherevskii, A.V. and Sidorin, A.Ya., Database of biological monitoring in the Garm polygon, Geofiz. Protsessy Biosfera, 2002, vol. 1, no. 2, pp. 3–15.Google Scholar
  8. Deshcherevskii, A.V. and Sidorin, A.Ya., Parametrization of time series of animal activity for geophysical studies, in Modelirovanie geofizicheskikh protsessov (Modeling of Geophysical Processes), Moscow: OIFZ RAN, 2003, pp. 137–155.Google Scholar
  9. Descherevsky, A.V. and Sidorin, A.Ya., Seasonal variations in natural processes and atmospheric precipitation, Ann. Geophys., 2004, vol. 47, no. 1, pp. 72–81.Google Scholar
  10. Deshcherevskii, A.V. and Sidorin, A.Ya., Improvement of robustness and stability in estimating Rayleigh–Schuster’s hodograph parameters using different procedures of vector normalization, Seism. Instrum., 2015, vol. 51, no. 2, pp. 79–97.Google Scholar
  11. Deshcherevskii, A.V. and Sidorin, A.Ya., Testing Rayleigh–Schuster hodographs using time series models and earthquake flows, Seism. Instrum., 2016, vol. 51, no. 3, pp. 232–252.Google Scholar
  12. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., Program package ABD—a universal tool for analysis of monitoring observation data, Nauka Tekhnol. Razrab., 2016a, vol. 95, no. 4, pp. 35–48.Google Scholar
  13. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., Problems of analysis of time series with gaps and their solution methods by the WinABD software, Geofiz. Protsessy Biosfera, 2016b, vol. 15, no. 3, pp. 5–34.Google Scholar
  14. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., Tekhnologii analiza geofizicheskikh ryadov. Ch. 1. Software requirements, Seism. Instrum., 2017a, vol. 53, no. 1, pp. 46–59.CrossRefGoogle Scholar
  15. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, no. 3, pp. 203–223.CrossRefGoogle Scholar
  16. Kanasewich, E.R., Time Sequence Analysis in Geophysics, Edmonton: Univ. of Alberta Press, 1981.Google Scholar
  17. Härdle, W., Applied Nonparametric Regression, Cambridge, Cambridge University Press, 1989; Moscow: Mir, 1993.Google Scholar
  18. Hemming, R.W., Digital Filters, Englewood Cliffs: Prentice Hall, 1983; Moscow: Nedra, 1987.Google Scholar
  19. Komarov, F.I., Khronobiologiya i khronomeditsina (Chronobiology and Chronomedicine). Moscow: Meditsina, 1989.Google Scholar
  20. Lagutin, M.B., Naglyadnaya matematicheskaya statistika (Illustrative Mathematical Statistics), Moscow: BINOM, 2009.Google Scholar
  21. Rytov, S.M., Vvedenie v statisticheskuyu radiofiziku (Introduction to Statistical Radiophysics), vol. 1: Sluchainye protsessy (Random Processes), Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1976.Google Scholar
  22. Sidorin, A.Ya., Garmskii geofizicheskii poligon (The Garm Geophysical Polygon), Moscow: IFZ AN SSSR, 1990.Google Scholar
  23. Terebizh, V.Yu., Analiz vremennykh ryadov v astrofizike (Analysis of Time Series in Astrophysics), Moscow: Nauka, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Desherevskii
    • 1
  • V. I. Zhuravlev
    • 1
  • A. N. Nikolsky
    • 1
  • A. Ya. Sidorin
    • 1
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations