Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 7, pp 714–724 | Cite as

Shielding in biology and biophysics: Methodology, dosimetry, interpretation

Article
  • 17 Downloads

Abstract

An interdisciplinary review of the publications on the shielding of organisms by different materials is presented. The authors show that some discrepancies between the results of different researchers might be attributed to methodological reasons, including purely biological (neglect of rhythms) and technical (specific features of the design or material of the screen) ones. In some cases, an important factor is the instability of control indices due to the variations in space weather. According to the modern concept of biological exposure to microdoses, any isolation of a biological object by any material necessarily leads to several simultaneous changes in environmental parameters, and this undermines the principle of “all other conditions being equal” in the classical differential scheme of an experiment. The shielding effects of water solution are universally recognized and their influence is to be observed for all organisms. Data on the exposure of living organisms to weak combined magnetic fields and on the influence of space weather enabled the development of theoretical models generally explaining the effect of shielding for bioorganisms. Ferromagnetic shielding results in changes of both the static magnetic field and the field of radio waves within the area protected by the screen. When screens are nonmagnetic, changes are due to the isolation from the radio waves. In both cases, some contribution to the fluctuations of measured parameters can be made by variations in the level of ionizing radiation.

Keywords

biological effects produced by the shielding of organisms by different materials electromagnetic ecology biophysics space weather microdoses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achkasova, Yu.N., Metabolism and the rate of reproduction of microorganisms in shielding of electric and magnetic fields, in Vliyanie slabykh elektromagnitnykh polei na biologicheskie ob"ekty (The Effect of Weak Electromagnetic Fields on Biological Objects), Kharkov: Kharkovskii meditsinskii institut, 1973, pp. 51–52.Google Scholar
  2. Achkasova, Yu.N., Bryzgunova, N.I., Klimenko, L.I., and Novgorodov, N.P., Biological action of nonionizing radiation and the problem of solar activity impact on organisms, in Vliyanie solnechnoi aktivnosti na biosferu (Solar Activity Impact on the Biosphere), Moscow: Nauka, 1982, vol. 43, pp. 109–116.Google Scholar
  3. Ageev, I.M. and Shishkin, G.G., Correlation between the solar activity and the electrical conductivity of water, Biophysics, 2001, vol. 46, no. 5, pp. 787–790.Google Scholar
  4. Aleksandrov, V.V., Ekologicheskaya rol’ elektromagnetizma (The Ecological Role of Electromagnetism), St. Petersburg: Politekhnicheskii universitet, 2006.Google Scholar
  5. Asashima, M., Shimada, K., and Pfeiffer, C.J., Magnetic shielding induces early developmental abnormalities in the Newt Cynopspyrrogaster, Bioelecrtomagnetics, 1991, vol. 12, no. 4, pp. 215–224.CrossRefGoogle Scholar
  6. Baranovsky, E.A., Tarashchuk, V.P., and Vladimirsky, B.M., Effect of solar activity and geophysical disturbance on physical–chemical processes in liquid medium: Preliminary analysis of storm-glass activity, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 8, pp. 925–934.CrossRefGoogle Scholar
  7. Belisheva, N.K., Popov, A.N., Petukhova, N.V., Pavlova, L.P., Osipov, K.S., Tkachenko, S.E., and Baranova, T.I., Qualitative and quantitative estimates for the geomagnetic field impact on the functional state of human brain, Biofizika, 1995, vol. 40, no. 5, pp. 1005–1012.Google Scholar
  8. Belova, N.A. and Panchelyuga, V.A., Lednev’s model: Theory and experiment, Biophysics, 2010, vol. 55, no. 4, pp. 661–674.CrossRefGoogle Scholar
  9. Bingi, V.N., Printsipy elektromagnitnoi biofiziki (Principles of Electromagnetic Biophysics), Moscow: Fizmatlit, 2011.Google Scholar
  10. Bogatina, N.I., Bondarenko, S.I., and Gudkov, S.V., Superconducting magnetic shield with hot working volume, Prib. Tekh. Eksp., 1989, no. 4, pp. 241–242.Google Scholar
  11. Bogatina, N.I. and Sheikina, N.V., The impact of the amplitude and frequency of the combined magnetic field on gravitropic response of plants, in V Mezhdunarodnyi kongress “Slabye i sverkhslabye polya i izlucheniya v meditsine”: Sbornik izbrannykh trudov (V International Congress “Weak and Superweak Fields and Radiations in Medicine”: Collection of Selected Papers), St. Petersburg, 2009, pp. 23–39.Google Scholar
  12. Bogomolova, E.V., Gavrilov, Yu.M., Dmitriev, S.P, Dovator, N.A., and Panina, L.K., Magnetic vacuum provokes anomalies in the polar growth of fungi, in V Mezhdunarodnyi kongress “Slabye i sverkhslabye polya i izlucheniya v meditsine”: Sbornik izbrannykh trudov (V International Congress “Weak and Superweak Fields and Radiations in Medicine”: Collection of Selected Papers), St. Petersburg, 2009, p. 78.Google Scholar
  13. Buchachenko, A.L., Kuznetsov, D.A., and Berdinskii, V.L., New mechanisms of biological effects of electromagnetic fields, Biophysics, 2006, vol. 51, no. 3, pp. 489–496.CrossRefGoogle Scholar
  14. Burlakova, E.B., Konradov, A.A., and Maltseva, E.L., Effects of extremely weak chemical and physical stimuli on biological systems, Biophysics, 2004, vol. 49, no. 3, pp. 522–534.Google Scholar
  15. Choleris, E., Del Sepia, C., Thomas, A.W., Luschi, P., Ghione, G., Moran, G.R., and Prato, F.S., Shielding,but zeroing of ambient magnetic field reduces stressinduced analgesia in mice, Proc. R. Soc. London, 2002, vol. B269, no. 1487, pp. 193–201.CrossRefGoogle Scholar
  16. Delyukov, A. and Didyk, L., The effects of extra-low frequency atmospheric pressure oscillations on human mental activity, Int. J. of Biometeorol., 1999, vol. 43, pp. 31–37.CrossRefGoogle Scholar
  17. Drozdov, A.V., Nagorskaya, T.P., Masyukevich, S.V., and Gorshkov, E.S., Quantum mechanical aspects of the effects of weak magnetic fields on biological objects, Biophysics, 2010, vol. 55, no. 4, pp. 652–660.CrossRefGoogle Scholar
  18. Fomicheva, V.M., Zaslavskii, V.A., Govorun, R.D., and Danilov, V.I., Dynamics of RNA and proteins in root meristem cells, Biofizika, 1992, vol. 37, no. 4, pp. 750–758.Google Scholar
  19. Govorun, R.D., Danilov, V.I., Fomicheva, V.M., Belyavskaya, H.A., and Zinchenko, S.Yu., Influence of fluctuations of the geomagnetic field and its shielding on the early phases of the development of higher plants, Biofizika, 1992, vol. 37, no. 4, pp. 738–744.Google Scholar
  20. Grigor’ev, Yu.G., Organism response in a weakened geomagnetic field (the magnetic deprivation effect), Radiats. Biol., Radioekol., 1995, vol. 35, no. 1, pp. 3–18.Google Scholar
  21. Grodnev, I.I., Elektromagnitnoe ekranirovanie v shirokom diapazone chastot (Electromagnetic Shielding in a Wide Frequency Band), Moscow: Svyaz’, 1972.Google Scholar
  22. Gurfinkel’, Yu.I., Ishemicheskaya bolezn’ serdtsa i solnechnaya aktivnost’ (Ischemic Heart Disease and Solar Activity), Moscow: El’f-3, 2004.Google Scholar
  23. Gusev, V.A., On the source of energy for survival and multiplication of heterotrophs in the absence of organic substrate. I. Formulation of the hypothesis, Biophysics, 2001, vol. 46, no. 5, pp. 862–878.Google Scholar
  24. Halpern, J.B. and Van-Duce, H.H., Very low magnetic fields: Biological effects and their implication for space exploration, in The 37th Annual Science Meeting of the Aerospace Medical Association, Las-Vegas (Nevada, USA), 1966, pp. 281–288.Google Scholar
  25. Kaznacheev, V.P. and Mikhailova, L.P., Bioinformatsionnaya funktsiya estestvennykh elektromagnitnykh polei (The Bioinformation Function of Natural Electromagnetic Fields), Novosibirsk: Nauka, 1985.Google Scholar
  26. Kholodnyi, Yu.G., Neurohormonal description of some models of emotional disorders under conditions of partial geomagnetic deprivation, in Aktual’nye problemy eksperimental’noi i klinicheskoi endokrinologii (Key Problems of Experimental and Clinical Endocrinology), Kharkov, 1979.Google Scholar
  27. Kolesnik, A.G., Kolesnik, S.A., and Pobachenko, S.V., Elektromagnitnaya ekologiya (Electromagnetic Ecology), Tomsk: Tomskii gosudarstvennyi universitet, 2009.Google Scholar
  28. Konovalov, A.I., The formation of nanosized molecular ensembles in highly dilute aqueous solutions, Herald Russ. Acad. Sci., 2013, vol. 83, no. 6, pp. 513–519.CrossRefGoogle Scholar
  29. Kopanev, V.I. and Shakula, A.V., Vliyanie gipomagnitnogo polya na biologicheskie ob"ekty (Hypomagnetic Field Effect on Biological Objects), Leningrad: Nauka, 1985.Google Scholar
  30. Kopylov, A.N. and Troitskii, M.A., Magnetic field effect on the radio sensitivity in mice, Radiobiologiya, 1982, vol. 22, no. 5, pp. 687–690.Google Scholar
  31. Kozlov, M.P., Trufanov, G.V., and Tovkanev, F.I., The impact of weakened geomagnetic field on the reproduction and development of white mice, VINITI Dep. no. 2074-84, Stavropol, 1984.Google Scholar
  32. Kuklev, Yu.I., Fizicheskaya ekologiya (Physical Ecology), Moscow: Vysshaya shkola, 2001.Google Scholar
  33. Kuzin, A.M., Prirodnyi radioaktivnyi fon i ego znachenie dlya biosfery Zemli (Natural Radioactivity Background and Its Significance for the Earth’s Biosphere), Moscow: Nauka, 1991.Google Scholar
  34. Kuzin, A.M., Surkenova, G.N., and Mozgovoi, E.G., Influence of K40 on the development of plants, Dokl. Akad. Nauk, 1994, vol. 334, no. 1, pp. 112–114.Google Scholar
  35. Kuzin, A.M., Vagatova, M.E., and Primak-Mirolyubov, V.N., On the role of the natural background of ionizing radiation at early phases of plant development, Radiobiologiya, 1997, no. 1, pp. 37–40.Google Scholar
  36. Lazareva, N.Yu. and Bingi, V.N., On the correlation between biological action of fictitious solutions and solar activity, Biofizika, 1992, vol. 37, no. 3, pp. 601–603.Google Scholar
  37. Lednev, V.V., Biological effects of extremely weak alternating magnetic fields: Identification of primary targets, in Modelirovanie geofizicheskikh protsessov (Modeling of Geophysical Processes), Sidorin, A.Ya., Ed., Moscow: IFZ RAN, 2003, pp. 130–136.Google Scholar
  38. Lednev, V.V., Belova, N.A., Rozhdestvenskaya, Z.E., and Tiras, Kh.P., Biological effects of weak alternating fields and biological precursors of earthquakes, Geofiz. Protsessy Biosfera, 2003, vol. 2, no. 1, pp. 7–18.Google Scholar
  39. Lednev, V.V., Belova, N.A., Ermakov, A.M, Akimov, E.B., and Tonevitsky, A.G., Modulation of cardiac rhythm in the humans exposed to extremely weak alternating magnetic fields, Biophysics, 2008, vol. 53, no. 6, pp. 648–654.CrossRefGoogle Scholar
  40. Martynyuk, V.S. and Temuryants, N.A., Magnetic fields of extremely low frequency as a factor of modulation and synchronization of infradian biorhythms in animals, Geofiz. Protsessy Biosfera, 2009, vol. 5, no. 1, pp. 5–23.Google Scholar
  41. Martynyuk, V.S., Vladimirsky, B.M., and Temur’yants, N.A., Biological rhythms and electromagnetic fields in the habitat, Geofiz. Protsessy Biosfera, 2009, vol. 8, no. 1, pp. 36–50.Google Scholar
  42. Mo, W.-C., Liu, Y., Cooper, H.M., and He, R.-Q., Altered development of Xenopus embryos in a hypomagnetic field, Bioelectromagnetics, 2012, vol. 33, no. 4, pp. 238–246.CrossRefGoogle Scholar
  43. Nakhil’nitskaya, Z.N., Mastryukova, V.M., and Borodkina, A.G., Organism response to the zero magnetic field influence, Kosm. Biol. Aviakosm. Med., 1978, vol. 12, no. 2, pp. 74–78.Google Scholar
  44. Novikov, V.V., Sheiman, I.M., and Fesenko, E.E., Effect of weak and ultraweak magnetic fields on the rate of asexual reproduction of the planarian Dugesia tigrina, Biophysics, 2002, vol. 47, no. 1, pp. 114–118.Google Scholar
  45. Opalinskaya, A.M. and Agulova, L.P., Vliyanie estestvennykh i iskusstvennykh elektromagnitnykh polei na fiziko–khimicheskuyu i elementarnuyu biologicheskuyu sistemy (Influence of Natural and Artificial Electromagnetic Fields on the Physico–Chemical and Elemental Biological Systems), Tomsk: TGU, 1984.Google Scholar
  46. Piccardi, G., The Chemical Basis of Medical Climatology, Springfield, 1962.Google Scholar
  47. Pokhodzei, L.V., Pal’tsev, Yu.P., and Rubtsova, N.B., The hypogeomagnetic field: Biological action and hygienic normalization, in Chelovek i elektromagnitnye polya: Doklady III Mezhdunarodnoi konferentsii (The Man and Electromagnetic Fields: Proceedings of the III International Conference), Sarov, 2010, pp. 185–193.Google Scholar
  48. Ponomarev, V.O. and Novikov, V.V., Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species, Biophysics, 2009, vol. 54, no. 2, pp. 163–168.CrossRefGoogle Scholar
  49. Prato, F.S., Holmes, D.D., Keenliside, L.D., DeMoor, J.M., Robertson, J.A., Stodilka, R.Z., and Thomas, A.W., The detection threshold for elf magnetic fields may be below 1000 nT–Hz in mice, Bioelectromagnetics, 2011, vol. 32, pp. 561–569.CrossRefGoogle Scholar
  50. Rapoport, S.I., Melatonin in the prevention of magnetic storms, in Vliyanie kosmicheskoi pogody na cheloveka v kosmose i na Zemle: Trudy Mezhdunarodnoi konferentsii (Space Weather Impact on Humans in Cosmos and on the Earth: Proceedings of International Conference), Moscow: IKI, 2013, vol. 2, pp. 615–618.Google Scholar
  51. Rothen, A., 24-hour periodicity in the course of immunologic reaction carried out at liquid-solid interface due to possible extra-terrestrial influences, J. Interdiscip. Cycle Res., 1976, vol. 7, no. 3, pp. 173–182.CrossRefGoogle Scholar
  52. Sokolovskii, V.V., Solar activity impact on the rate of oxidation of thiolic compounds, in Elektromagnitnye polya v biosfere (Electromagnetic Fields in the Biosphere), Moscow: Nauka, 1984, vol. 1, pp. 193–206.Google Scholar
  53. Soroka, S.A., Negoda, A.A., Mezentsev, V.P., Kalita, B.I., and Karataeva, L.M., The infrasonic channel of influence of solar activity on the biosphere, Biophysics, 2004, vol. 49, suppl. 1, pp. S32–S42.Google Scholar
  54. Sosunov, A.V., Golubchak, B.A., and Semkin, V.A., Observations on the study of some biological processes in shielded spaces, in Gigienicheskaya otsenka magnitnykh polei (Hygienic Assessment of Magnetic Fields), Moscow, 1972, pp. 144–146.Google Scholar
  55. Stepanyuk, I.A., Frolova, N.S., Zimin, A.V., and Perevozchikov, N.F., Search for mechanisms of the influence of hydrometeorological processes on the storm glass, in Vliyanie kosmicheskoi pogody na cheloveka v kosmose i na Zemle: Trudy Mezhdunarodnoi konferentsii (Space Weather Impact on Humans in Cosmos and on the Earth: Proceedings of International Conference), Moscow: IKI, 2013, vol. 2, pp. 7–745.Google Scholar
  56. Temuryants, N.A. and Grabovskaya, E.Yu., Response of rats with various constitutional features to the action of weak alternating magnetic fields of very low frequencies, Biofizika, 1992, vol. 37, no. 4, pp. 817–820.Google Scholar
  57. Temuryants, N.A. and Demtsun, N.A., Seasonal differences in the regeneration of planarians under conditions of long-term electromagnetic shielding, Biophysics, 2010, vol. 55, no. 4, pp. 628–632.CrossRefGoogle Scholar
  58. Temuryants, N.A., Chuyan, E.N., Kostyuk, A.S., Tumanyants, K.N., Demtsun, N.A., and Yarmolyuk, N.S., Effekt slabykh elektromagnitnykh faktorov u bespozvonochnykh zhivotnykh (The Effect of Weak Electromagnetic Factors in Invertebrate Animals), Simferopol: Diaipi, 2012.Google Scholar
  59. Temuryants, N.A. and Kostyuk, A.S., Alternating magnetic field influence of very low frequency on the activity of the opioid system of mollusks exposed to long-term electromagnetic shielding, Geofiz. Protsessy Biosfera, 2015, vol. 14, no. 1, pp. 42–52.Google Scholar
  60. Tromp, S.W., Long-term fluctuations of the physico–chemical state of human blood and their possible geophysical causes, Z. Phys. Med., Balneol., Med. Klimatol., 1981, no. 6, pp. 359–369.Google Scholar
  61. Udal’tsova, N.V., Kolombet, V.A., and Shnol’, S.E., Vozmozhnaya kosmofizicheskaya obuslovlennost’ makrokosmicheskikh fluktuatsii v protsessakh raznoi prirody (Possible Cosmophysical Dependence of Macrocosmic Fluctuations in Processes of Various Nature), Pushchino, 1987.Google Scholar
  62. Verkin, B.I., Bondarenko, S.I., Sheremet, V.I., Dudaeva, A.A., Safonova, T.S., and Yurchenko, G.G., Influence of weak magnetic field on some types of bacteria, Mikrobiologiya, 1976, vol. 45, no. 6, pp. 1067–1070.Google Scholar
  63. Vladimirsky, B.M., Sectional structure of the interplanetary magnetic field and Piccardi chemical tests, in Problemy kosmicheskoi biologii (Problems of Cosmic Biology), Leningrad: Nauka, 1989, vol. 65, p. 210.Google Scholar
  64. Vladimirsky, B.M., Electromagnetic fields in the habitat, “biolocation,” and homing, Geofiz. Protsessy Biosfera, 2006, vol. 5, no. 2, pp. 5–17.Google Scholar
  65. Vladimirsky, B.M., Zagadochnyi shtormglass i pogoda - zemnaya i kosmicheskaya, Prostranstvo Vremya, 2013, no. 2, pp. 173–182.Google Scholar
  66. Zhadin, M.N., Mechanisms of biological influence of weak magnetic fields, Biophysics, 2004, vol. 49, suppl. 1, pp. 548–551.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Vernadsky Crimean Federal UniversitySimferopol, CrimeaRussia

Personalised recommendations