Izvestiya, Atmospheric and Oceanic Physics

, Volume 52, Issue 7, pp 753–759 | Cite as

Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

  • V. A. Moiseyev
  • V. P. Nazarov
  • V. Y. Zhuravlev
  • D. A. Zhuykov
  • M. V. Kubrikov
  • Y. N. Klokotov
Article

Abstract

The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan–Boltzmann’s radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

Keywords

highly viscous oil oil-producing formations hardly recoverable oil biosphere technological processes geophysical processes geochemical processes ecological problems of oil production thermalenhanced oil recovery superheated vapor oil-well tubing heat insulating cover finite element model strength thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amosov, A.A., Dubinskii, Yu.A., and Kopchenova, N.P., Vychislitel’nye metody dlya inzhenerov: Ucheb. posobie (Computational Methods for Engineers: A Textbook), Moscow: MEI, 2003.Google Scholar
  2. Iskritskaya, N.I., Foreign experience of practical exploration of the reserves of very heavy crude oils and natural bitumens, in Sbornik materialov Nauchno-prakticheskoi konferentsii “Kompleksnoe izuchenie i osvoenie syr’evoi bazy nefti i gaza severa Evropeiskoi chasti Rossii” (Proceedings of the Scientific and Practical Conference “Complex Study and Exploration of the Oil and Gas Raw Material Base in the North of European Russia”), St. Petersburg: VNIGRI, 2012, pp. 271–276.Google Scholar
  3. Khisamov, R.S., Gatiyatulin, N.S., Makarevich, V.N., Iskritskaya, N.I., and Bogoslovskii, S.A., Osobennosti osvoeniya tyazhelykh vysokovyazkikh neftei i prirodnykh bitumov Vostochno-Evropeiskoi platformy (Specific Features of the Exploration of Very Heavy Crude Oils and Natural Bitumens of the East-European Platform), St. Petersburg: VNIGRI, 2009.Google Scholar
  4. Kiselev, B.A., Stekloplastiki (Fiberglasses), Moscow: Goskhimizdat, 1961.Google Scholar
  5. Komkov, M.A., Moiseev, V.A., Tarasov, V.A., and Timofeev, M.P., Minimization of the Negative Influence on the Biosphere in Heavy Oil Extraction and Ecologically Clean Technology for the Injection of the Steam with Supercritical Parameters in Oil Strata on the Basis of New Ecologically Clean Tubing Pipes with Heat- Resistant Coatings, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 8, pp. 819–825.CrossRefGoogle Scholar
  6. Kozhevnikov, I.G. and Novitskii, L.A., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh: Spravochnik (Thermophysical Properties of Materials at Low Temperatures), Moscow: Mashinostroenie, 1982.Google Scholar
  7. Makarevich, V.N., Iskritskaya, N.I., and Bogoslovskii, S.A., The resource potential of heavy oils in the Russian Federation: Exploration prospects, Neftegaz. Geol., Teor. Prakt., 2010, vol. 5, no. 2. http://www.ngtp.ru/rub/6/29_2010.pdf.Google Scholar
  8. Makarevich, V.N., Iskritskaya, N.I., and Bogoslovskii, S.A., The resource potential of heavy oil deposits in the European part of the Russian Federation, Neftegaz. Geol., Teor. Prakt., 2012, vol. 7, no. 3. http://www.ngtp.ru/rub/6/43_2012.pdf.Google Scholar
  9. Rudakov, K.N., FEMAP 10.2.0: Geometricheskoe i konechnoelementnoe modelirovanie konstruktsii (FEMAP 10.2.0: Geometric and Finite-Element Modeling of Constructs), Kiev: KPI, 2011.Google Scholar
  10. Rychkov, K.N., Modelirovanie konstruktsii v srede FemapwithNXNastran (Modeling of Constructs in the FemapwithNXNastran Environment), Moscow: DMK, 2013.Google Scholar
  11. TANEKO: Ekologiya pod kontrolem (TANEKO: Ecology Under Control), 2012. http://www.tatneft.ru.Google Scholar
  12. Tsvetkov, F.F. and Grigor’ev, B.A., Teplomassoobmen: Uchebnoe posobie dlya vuzov (Heat and Mass Exchange: A Textbook for Higher Education Institutions), Moscow: MEI, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. A. Moiseyev
    • 1
  • V. P. Nazarov
    • 2
  • V. Y. Zhuravlev
    • 2
  • D. A. Zhuykov
    • 2
  • M. V. Kubrikov
    • 2
  • Y. N. Klokotov
    • 1
  1. 1.ZAO KOMPOMASH-TEKMoscowRussia
  2. 2.Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations