Izvestiya, Atmospheric and Oceanic Physics

, Volume 44, Issue 1, pp 90–99 | Cite as

Structure of time variations in carbon dioxide in the atmospheric thickness over central Eurasia (Issyk Kul Monitoring Station)

  • F. V. Kashin
  • V. N. Aref’ev
  • V. K. Semenov
  • V. P. Sinyakov
  • L. B. Upenek


The results are presented of statistical analysis of the data obtained from the 1980–2006 systematic measurements of the volume concentration of carbon dioxide in the atmospheric thickness over central Eurasia. The trends of both monthly and yearly means of CO2 concentration are determined. During these 26 years, the yearly mean concentration increased by ∼42 ppm at a mean rate of (1.56 ± 0.18) ppm per year and reached ∼382.7 ppm. General statistical characteristics are found. The distribution function of the monthly mean concentrations of CO2 is characterized by the presence of a second maximum and a bias of the principal mode toward large values, and the mean (over the measurement time) monthly concentration and the median almost coincide. The distribution function of the yearly mean concentrations of CO2 is close to a normal distribution, and the mean (over the measurement time) yearly concentration, the median, and the mode also coincide. The trends of short-and long-period variations in the carbon dioxide concentration and their possible relation to a number of geophysical phenomena are revealed. Spectral analysis of the measuring data on CO2 revealed oscillations with periods of 4, 6, 12, 15, 21, 29, 40, 53, 84, and 183 months. A statistical model with the parameters of these oscillations describes the experimental monthly mean concentrations of carbon dioxide with an rms deviation of 2.3 ppm (±0.6% of the mean over the entire period 361.9 ppm) and the yearly mean concentrations with an rms deviation of 0.9 ppm (∼±0.3%).


Carbon Dioxide Oceanic Physic Carbon Dioxide Concentration Atmospheric Carbon Dioxide Principal Mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “2. Carbon Cycle Greenhouse Gases,” Ed. by T. J. Conway, A. E. Andrews, L. Bruhweler, et al., in Climate Monitoring and Diagnostics Laboratory Summary Report, 2002–2003, Ed. by R. C. Scnell (NOAA Oceanic and Atmospheric Research, Boulder, CO, 2004).Google Scholar
  2. 2.
    WMO WDCGG Data Summary, WDCGG No. 30, GAW Data, Vol. IV, Greenhouse Gases and Other Atmospheric Gases (JMA & WMO, Geneva, 2006).Google Scholar
  3. 3.
    W. D. Komhyr, L. S. Waterman, and W. R. Taylor, “Semiautomatic Nondispersive Infrared Analyzer Apparatus for CO2 Air Sample Analyses,” J. Geophys. Res. C 88, 1315–1329 (1983).CrossRefGoogle Scholar
  4. 4.
    R. M. Akimenko, V. N. Aref’ev, N. E. Kamenogradskii, et al., “Spectroscopic Method of Determining the CO2 Content in the Atmosphere,” Meteorol. Gidrol., No. 6, 102–105 (1979).Google Scholar
  5. 5.
    L. Wallace and W. Livingston, “Spectroscopic Observations of Atmospheric Trace Gases over Kitt Peak: 1. Carbon Dioxide and Methane from 1979 to 1985,” J. Geophys. Res. D 95, 9823–9827 (1990).CrossRefGoogle Scholar
  6. 6.
    J. Notholt, G. C. Toon, C. P. Rinsland, et al., “Latitudinal Variations of Trace Gas Concentrations in the Free Troposphere Measured by Solar Absorption Spectroscopy During a Ship Cruise,” J. Geophys. Res. D 105, 1337–1350 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Buchwitz, V. V. Rozanov, and J. P. Burrows, “A Near-Infrared Optimized DOAS Method for the Fast Global Retrieval of Atmospheric CH4, CO, CO2, H2O and N2O Total Column Amounts from SCIAMACHY Envisat 1 Nadir Radiances,” J. Geophys. Res. D 105, 15231–15245 (2000).CrossRefGoogle Scholar
  8. 8.
    B. T. Tolton and D. Plloufe, “Sensitive of Radiometric Measurements of the Atmospheric Column from Space,” Appl. Opt. 40, 1305–1313 (2001).CrossRefGoogle Scholar
  9. 9.
    Z. G. Yang, C. Toon, J. S. Margolis, and P. O. Wennberg, “Atmospheric CO2 Retrieved from Ground-Based Near IR Solar Spectra,” Geophys. Res. Lett. 29, doi: 10.1029/2001GL014537, 1339 (2002).Google Scholar
  10. 10.
    M. J. Christi and G. L. Stephens, “Retrieving Profiles of Atmospheric CO2 in Clear Sky and in the Presence of Thin Cloud Using Spectroscopy from the Near and Thermal Infrared: A Preliminary Case Study,” J. Geophys. Res. 109, doi: 10.1029/2003JD004058, D04316 (2004).Google Scholar
  11. 11.
    E. Dufour, F-M. Breon, and P. Peylin, “CO2 Column Averaged Mixing Ratio from Inversion of Ground-Based Solar Spectra,” J. Geophys. Res. D 109, doi: 10.1029/2003JD004469, D02301, D09304 (2004).Google Scholar
  12. 12.
    T. Warneke, Z. Yang, S. Olsen, et al., “Seasonal and Latitudinal Variations of Column Averaged Volume Mixing Ratios of Atmospheric CO2,” Geophys. Res. Lett. 32, doi: 10.1029/2004GL021597, L03808 (2005).Google Scholar
  13. 13.
    V. N. Aref’ev, V. I. Dianov-Klokov, and I. P. Malkov, “Field Spectral Complex for Studies of the Content of Polluting Gases in the Atmosphere,” Tr. IEM, No. 8(81), 73–78 (1978).Google Scholar
  14. 14.
    R. M. Akimenko, V. N. Aref’ev, L. L. Brizhanskaya, et al., “Study of Atmospheric Carbon Dioxide,” Opt. Atmos. 1(9), 49–53 (1988).Google Scholar
  15. 15.
    V. N. Aref’ev, F. V. Kashin, and N. E. Kamenogradskii, “Systematic Measurements of the Concentration of Carbon Dioxide in the Atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 26, 584–593 (1990).Google Scholar
  16. 16.
    V. N. Aref’ev, N. E. Kamenogradskii, F. V. Kashin, et al., “Changes in the Growth Rate of the Atmospheric Carbon Dioxide Concentration from Measurements over Lake Issyk Kul,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32, 437–439 (1996) [Izv., Atmos. Ocean. Phys. 32, 401–402 (1996)].Google Scholar
  17. 17.
    F. V. Kashin, V. N. Aref’ev, K. N. Visheratin, et al., “Results of Experimental Studies of Radiatively Active Atmospheric Constituents in Central Eurasia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 463–492 (2000) [Izv., Atmos. Ocean. Phys. 36, 425–453 (2000)].Google Scholar
  18. 18.
    F. V. Kashin, V. N. Aref’ev, N. E. Kamenogradskii, et al., “Carbon Dioxide Content in the Atmospheric Thickness over Central Eurasia (Issyk Kul Monitoring Station),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 521–539 (2007) [Izv., Atmos. Ocean. Phys. 43, 480–489 (2007)].Google Scholar
  19. 19.
    K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric Carbon Dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985,” J. Geophys. Res. D 94, 8549–8565 (1989).CrossRefGoogle Scholar
  20. 20.
    V. A. Rozhkov, Probability Theory for Random Events, Quantities, and Functions with Hydrometeorological Examples (Progress-Pogoda, St. Petersburg, 1996) [in Russian].Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • F. V. Kashin
    • 1
  • V. N. Aref’ev
    • 1
  • V. K. Semenov
    • 2
  • V. P. Sinyakov
    • 2
  • L. B. Upenek
    • 1
  1. 1.Institute of Experimental Meteorology of State Institution Research and Production Association “Typhoon”Obninsk, Kaluga oblastRussia
  2. 2.Kyrgyz State National UniversityBishkekKyrgyzstan

Personalised recommendations