Izvestiya, Atmospheric and Oceanic Physics

, Volume 44, Issue 1, pp 83–89 | Cite as

Simulation of thermal and hydrological regimes of Siberian river watersheds under permafrost conditions from reanalysis data

  • M. M. Arzhanov
  • A. V. Eliseev
  • P. F. Demchenko
  • I. I. Mokhov
  • V. Ch. Khon


A one-dimensional dynamic model of heat and moisture transfer in the soil has been developed. The use of the ERA-40 reanalysis as input data makes it possible to compute characteristics of the soil thermal and hydrological regimes, including watershed runoff, from specified climatic characteristics of the atmosphere. Results are presented of numerical experiments on a comparison of the model estimates of the depths of seasonal thawing with observations at several Siberian stations. For the latter half of the 20th century, the depths of seasonal thawing are mapped and runoff from watersheds of the largest Siberian rivers is computed. The model reproduces observed runoff variations. For the Ob basin, the model-derived runoff estimates agree well with observational data if peat deposits in the upper 2-m layer are taken into account.


Reanalysis Data Oceanic Physic Annual Runoff Moisture Transfer Permafrost Region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Mokhov and V. Ch. Khon, “Model Scenario of Siberian River Runoff Changes,” Dokl. Akad. Nauk 383, 684–687 (2002).Google Scholar
  2. 2.
    I. I. Mokhov, V. A. Semenov, and V. Ch. Khon, “Estimates of Possible Regional Hydrological Regime Changes in the 21st Century Based on Global Climate Models,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 150–165 (2003) [Izv., Atmos. Ocean. Phys. 39, 130–144 (2003).Google Scholar
  3. 3.
    V. P. Nechaev, “Some Relations between Permafrost and Climatic Parameters and Their Paleogeographic Significance,” in Problems of the Paleogeography of the Pleistocene of Glacial and Periglacial Regions, Ed. by A. A. Velichko and V. P. Grichuk (Nauka, Moscow, 1981), pp. 211–220 [in Russian].Google Scholar
  4. 4.
    F. E. Nelson and S. I. Outcalt, “A Computational Method for Prediction and Regionalization of Permafrost,” Arctic. Alp. Res. 19, 279–288 (1987).CrossRefGoogle Scholar
  5. 5.
    P. F. Demchenko, A. A. Velichko, A. V. Eliseev, et al., “Dependence of Permafrost Conditions on Global Warming: Comparison of Models, Scenarios, and Paleoclimatic Reconstructions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 165–174 (2002) [Izv., Atmos. Ocean. Phys. 38, 143–151 (2002).Google Scholar
  6. 6.
    T. Zhang, O. W. Frauenfeld, M. C. Serreze, et al., “Spatial and Temporal Variability in Active Layer Thickness over the Russian Arctic Drainage Basin,” J. Geophys. Res. D 110, D16101 (2005).Google Scholar
  7. 7.
    V. A. Kudryavtsev, Temperature of the Upper Horizons of Permafrost Thickness within the USSR (Akad. Nauk SSSR, Leningrad, 1954) [in Russian].Google Scholar
  8. 8.
    T. S. Sazonova and V. E. Romanovsky, “A Model for Regional-Scale Estimation of Temporal and Spatial Variability of Active-Layer Thickness and Mean Annual Ground Temperatures,” Permafr. Periglac. Processes, No. 2, 125–140 (2003).Google Scholar
  9. 9.
    C. Waelbroeck, “Climate-Soil Processes in the Presence of Permafrost: A Systems Modelling Approach,” Ecol. Model. 69, 185–225 (1993).CrossRefGoogle Scholar
  10. 10.
    L. E. Goodrich, “Efficient Numerical Technique for One-Dimensional Thermal Problems with Phase Change,” Int. J. Heat Mass Transfer, No. 5, 160–163 (1978).Google Scholar
  11. 11.
    E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34, 453–465 (1998) [Izv., Atmos. Ocean. Phys. 34, 405–416 (1998)].Google Scholar
  12. 12.
    E. E. Machul’skaya and V. N. Lykosov, “Simulation of the Thermodynamic Response of Permafrost to Seasonal and Interannual Variations in Atmospheric Parameters,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 20–33 (2002) [Izv., Atmos. Ocean. Phys. 38, 15–26 (2002)].Google Scholar
  13. 13.
    M. Claussen, L. Mysak, A. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Model,” Clim. Dyn. 18, 579–586 (2002).CrossRefGoogle Scholar
  14. 14.
    V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Responses to Atmospheric CO2 Doubling,” Clim. Dyn., No. 4, 363–385 (2005).Google Scholar
  15. 15.
    M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, and I. I. Mokhov, “Simulation of Changes in the Thermal and Hydrologic Regimes of Surface Permafrost with the Use of Climatic Data (Reanalysis),” Kriosfera Zemli 11 (4) (2007).Google Scholar
  16. 16.
    M. M. Arzhanov, A. A. Anisimov, P. F. Demchenko, et al., “Permafrost Models Intercomparison,” Res. Activ. Atmos. Ocean. Model, No. 1220, 04.01–04.02 (2004).Google Scholar
  17. 17.
    M. M. Arzhanov, “Simulation of the Thermal and Hydrologic Regimes of Permafrost,” in Proc. of 10th All-Russia Conference of Young Scientists on Atmospheric Composition, Climatic Effects, and Atmospheric Electricity (MAKS, Moscow, 2006), p. 12 [in Russian].Google Scholar
  18. 18.
    Ya. A. Pachepskii, L. B. Pachepskaya, E. V. Mironenko, and A. S. Komarov, Simulation of the Water-Salt Regime of Grounds with the Use of a Computer (Nauka, Moscow, 1976) [in Russian].Google Scholar
  19. 19.
    A. V. Pavlov, Thermal Physics of Landscapes (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  20. 20.
    A. M. Globus, Physics of Nonisothermal Intrasoil Moisture Transfer (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  21. 21.
    G. S. Golitsyn, “To the Theory of Upper-Mantle Convection,” Dokl. Akad. Nauk SSSR 234, 552–555 (1977).Google Scholar
  22. 22.
    V. A. Alexeev, D. J. Nicolsky, V. E. Romanovsky, et al., “An Evaluation of Deep Soil Configurations in the CLM3 for Improved Representation of Permafrost,” Geophys. Rev. Lett. 34, doi: 10.1029/2007GL02536, L09502 (2007).CrossRefGoogle Scholar
  23. 23.
    O. A. Anisimov, “Estimation of the Sensitivity of Permafrost to a Change in the Global Thermal Regime of the Earth’s Surface,” Meteorol. Gidrol., No. 1, 79–84 (1989).Google Scholar
  24. 24.
    V. V. Simonov, “Effect of Intraannual Seasonal Connections on the Thermal Regime in Permafrost Regions,” Meteorol. Gidrol., No. 5, 15–22 (2000).Google Scholar
  25. 25.
    S. M. Uppala, P. W. Kallberg, A. J. Simmos, et al., “The ERA-40 Re-analysis,” Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).CrossRefGoogle Scholar
  26. 26.
    A. V. Pavlov, “Permafrost-Climate Changes in Northern Russia: Observations, Forecasting,” Izv. Akad. Nauk, Ser. Geograf., No. 6, 39–50 (2003).Google Scholar
  27. 27.
    T. Zhang, R. G. Barry, K. Knowles, et al., “Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere,” Polar. Geogr. 23(2), 132–154 (1999).CrossRefGoogle Scholar
  28. 28.
    O. A. Anisimov and M. A. Belolutskaya, “Simulation of the Effect of Anthropogenic Warming on Permafrost: Consideration for the Influence of Vegetation,” Meteorol. Gidrol., No. 11, 73–82 (2004).Google Scholar
  29. 29.
    A. V. Pavlov, Yu. B. Skachkov, and N. B. Kakunov, “Relationship between Multiyear Variations in the Depth of Seasonal Ground Thawing and Meteorological Factors,” Kriosfera Zemli 8(4), 3–11 (2004).Google Scholar
  30. 30.
    M. New, M. Hulme, and P. Jones, “Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate,” J. Clim., No. 13, 2217–2238 (2000).CrossRefGoogle Scholar
  31. 31.
    Global Runoff Data Centre, Second Interim Report on the Arctic River Database for Arctic Climate System Study (ACSYS), Technical Report No. 12 (FIH, Koblenz, 1966).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • M. M. Arzhanov
    • 1
  • A. V. Eliseev
    • 1
  • P. F. Demchenko
    • 1
  • I. I. Mokhov
    • 1
  • V. Ch. Khon
    • 1
  1. 1.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations