Izvestiya, Atmospheric and Oceanic Physics

, Volume 44, Issue 1, pp 72–82 | Cite as

Intense turbulent convection in a horizontal plane liquid layer

  • S. Ya. Gertsenshtein
  • I. A. Palymskii
  • I. N. Sibgatullin


Direct numerical simulation of turbulent convection in a horizontal liquid layer heated from below is performed within the framework of the nonstationary Navier—Stokes equations with the use of the Bubnov—Galerkin method. The main attention is given to calculations for superhigh supercriticalities. Computational burden is reduced by the use of the splitting method at each step of integration. Previously, the smallness of the residual arising from substitution of simulated results into the initial system of equations is demonstrated and the residual’s dependence on the number of reference functions and supercriticality is considered. A good agreement of the results obtained with the use of different numerical implementations of the Bubnov—Galerkin procedure is shown, in particular, for the stochastic processes corresponding to a low supercriticality and appearing with the formation of strange attractors close to a Mobius strip. The calculations were carried out for a wide range of supercriticality (from 1 to 34000). It is shown that simulations and experiment are in good qualitative agreement.


Nusselt Number Prandtl Number Rayleigh Number Oceanic Physic Velocity Pulsation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. McLaughlin and P. C. Martin, “Turbulence in a Statically Stressed Fluid System,” Phys. Rev. A 12, 186–203 (1975).CrossRefGoogle Scholar
  2. 2.
    S. Ya. Gertsenshtein and V. M. Shmidt, “Nonlinear Development and Interaction of Finite-Amplitude Disturbances During a Convective Instability of a Rotating Plane Layer,” Dokl. Akad. Nauk SSSR 225(1), 59–62 (1975).Google Scholar
  3. 3.
    V. N. Gryaznov and V. I. Polezhaev, Numerical Solution of Nonstationary Navier—Stokes Equations for a Turbulent Regime of Natural Convection, Preprint No. 81 (Inst. of Problems of Mechanics, Russian Academy of Sciences, 1977).Google Scholar
  4. 4.
    F. V. Dolzhanskii, V. I. Klyatskin, A. M. Oboukhov, and A. M. Chusov, Nonlinear Systems of Hydrodynamic Type (Nauka, Moscow, 1974) [in Russian].Google Scholar
  5. 5.
    E. N. Lorenz, “Deterministic Nonreriodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).CrossRefGoogle Scholar
  6. 6.
    S. Ya. Gertsenshtein and V. N. Popov, “Integral Method of Calculating Turbulent Convection in a Horizontal Layer of a Solution,” Dokl. Akad. Nauk 363, 769–771 (1998).Google Scholar
  7. 7.
    I. N. Sibgatullin, S. Ya. Gertsenstein, and N. R. Sibgatullin, “Some Properties of Two-Dimensional Stochastic Regimes of Double-Diffusive Convection in Plane Layer,” Chaos 13, 1231–1241 (2003).CrossRefGoogle Scholar
  8. 8.
    E. B. Rodichev and O. V. Rodicheva, “Two-Dimensional Turbulence in the Rayleigh-Benard Problem,” Dokl. Akad. Nauk 359, 486–489 (1998).Google Scholar
  9. 9.
    S. Gertsenstein and I. Sibgatullin, “Bifurcations, Transition to Turbulence and Development of Chaotic Regimes for Double-Diffusive Convection,” WSEAS Trans. Appl. Theor. Mech. 1(1), 110–114 (2006).Google Scholar
  10. 10.
    V. I. Arnold and A. Avez, Problemes Ergodique de la Mechanique Classique (Gauthier Villars, Paris, 1967).Google Scholar
  11. 11.
    Ya. G. Sinai, “On the Concept of Entropy in Smooth Dynamical Systems,” Dokl. Akad. Nauk SSSR 124, 754 (1959).Google Scholar
  12. 12.
    D. V. Anosov, “Introductory Paper,” in Smooth Dynamical Systems, Ed. by A. N. Kolmogorov and S. P. Novikov (Mir, Moscow, 1977) [in Russian].Google Scholar
  13. 13.
    F. V. Dolzhanskii, “Mechanical Prototypes of Fundamental Hydrodynamic Invariants and Slow Manifolds,” Usp. Fiz. Nauk 175, 1257–1288 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Smeil, “Differentiable Dynamical Systems,” Usp. Mat. Nauk 25, 113–185 (1970).Google Scholar
  15. 15.
    V. I. Yudovich, “Stability of Stationary Flows of a Viscous Incompressible Fluid,” Dokl. Akad. Nauk SSSR 5, 1037–1040 (1965).Google Scholar
  16. 16.
    G. M. Zaslavskii and R. Z. Sagdeev, Introduction into Nonlinear Physics: From Pendulum to Turbulence and Chaos (Nauka, Moscow, 1988) [in Russian].Google Scholar
  17. 17.
    I. B. Palymskii, “Numerical Simulation of Two-Dimensional Convection at a High Supercriticality,” Usp. Mekh., No. 4, 3–28 (2006).Google Scholar
  18. 18.
    R. Farhadien and R. S. Tankin, “Interferometric Study of Two-Dimensional Benard Convection Cells,” J. Fluid Mech. 66, 739–752 (1974).CrossRefGoogle Scholar
  19. 19.
    R. A. Denton and I. R. Wood, “Turbulent Convection between Two Horizontal Plates,” Int. J. Heat Mass Transfer 22, 1339–1346 (1979).CrossRefGoogle Scholar
  20. 20.
    H. T. Rossby, “A Study of Benard Convection with and Without Rotation,” J. Fluid Mech. 36, 309–335 (1969).CrossRefGoogle Scholar
  21. 21.
    D. E. Fitzjarrald, “An Experimental Study of Turbulent Convection in Air,” J. Fluid Mech. 73, 693–719 (1976).CrossRefGoogle Scholar
  22. 22.
    A. V. Malevsky and D. A. Yuen, “Characteristics-Based Methods Applied to Infinite Prandtl Number Thermal Convection in the Hard Turbulent Regime,” Phys. Fluids. A 3, 2105–2115 (1991).CrossRefGoogle Scholar
  23. 23.
    A. M. Garon and R. J. Goldstein, “Velocity and Heat Transfer Measurements in Thermal Convection,” Phys. Fluids 16, 1818–1825 (1973).CrossRefGoogle Scholar
  24. 24.
    T. Y. Chu and R. J. Goldstein, “Turbulent Convection in a Horizontal Layer of Water,” J. Fluid Mech. 60, 141–159 (1973).CrossRefGoogle Scholar
  25. 25.
    J. W. Deardorff and G. E. Willis, “Investigation of Turbulent Thermal Convection between Horizontal Plates,” J. Fluid Mech. 28, 675–704 (1967).CrossRefGoogle Scholar
  26. 26.
    S. Globe and D. Dropkin, “Natural-Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated Below,” J. Heat Transfer 81, 24–28 (1959).Google Scholar
  27. 27.
    W. V. R. Malkus, “Discrete Transitions in Turbulent Convection,” Proc. R. Soc. Ser. A, London 225(1161), 185–195 (1954).CrossRefGoogle Scholar
  28. 28.
    G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of an Incompressible Fluid (Nauka, Moscow, 1972) [in Russian].Google Scholar
  29. 29.
    G. Neumann, “Three-Dimensional Numerical Simulations of Buoyancy-Driven Convection in Vertical Cylinders Heated from Below,” J. Fluid Mech. 214, 559 (1990).CrossRefGoogle Scholar
  30. 30.
    X.-Z. Wu, L. Kananoff, A. Libchaber, and M. Sano, “Frequency Power Spectrum of Temperature Fluctuations in Free Convection,” Phys. Rev. Lett. 64, 2140–2143 (1990).CrossRefGoogle Scholar
  31. 31.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: Hydrodynamics (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar
  32. 32.
    R. M. Kerr, “Rayleigh Number Scaling in Numerical Convection,” J. Fluid Mech. 310, 139–179 (1996).CrossRefGoogle Scholar
  33. 33.
    S. Cioni, S. Ciliberto, and J. Sommeria, “Temperature Structure Functions in Turbulent Convection at Low Prandtl Number,” Europhys. Lett. 32, 413–418 (1995).CrossRefGoogle Scholar
  34. 34.
    P. G. Frik, Turbulence: Approaches and Models (Inst. of Computer Studies, Moscow, 2003) [in Russian].Google Scholar
  35. 35.
    S. Ashkenazi and V. Steinberg, “Spectra and Statistics of Velocity and Temperature Fluctuations in Turbulent Convection,” Phys. Rev. Lett. 83, 4760–4763 (1999).CrossRefGoogle Scholar
  36. 36.
    X.-D. Shang and K.-Q. Xia, “Scaling of the Velocity Power Spectra in Turbulent Thermal Convection,” Phys. Rev. E 64, 065301-1-4 (2001).CrossRefGoogle Scholar
  37. 37.
    A. V. Malevsky, “Spline-Characteristic Method for Simulation of Convective Turbulence,” J. Comput. Phys. 123, 466–475 (1996).CrossRefGoogle Scholar
  38. 38.
    R. A. Brazhe and O. N. Kudelin, “Experimental Implementation of the Lorenz Model of a Convective Instability of a Fluid in a Vertical Toroidal Cell,” Izv. Vyssh. Uchebn. Zaved., Probl. Nonlin. Dyn., 14(6), 88–98 (2006).Google Scholar
  39. 39.
    J. J. Niemela, L. Skrbek, K. R. Sreenivasan, et al., “Turbulent Convection at Very High Rayleigh Numbers,” Nature 404(20), 837–840 (2000).CrossRefGoogle Scholar
  40. 40.
    R. Verzicco and R. Camussi, “Numerical Experiments on Strongly Turbulent Thermal Convection in a Slender Cylindrical Cell,” J. Fluid Mech. 477, 19–49 (2003).CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • S. Ya. Gertsenshtein
    • 1
  • I. A. Palymskii
    • 2
  • I. N. Sibgatullin
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia
  2. 2.Modern Humanitarian Academy NFNovosibirskRussia

Personalised recommendations