Izvestiya, Atmospheric and Oceanic Physics

, Volume 44, Issue 1, pp 33–44 | Cite as

Similarity parameters and a centrifugal convective instability of horizontally inhomogeneous circulations of the Hadley type

Article
  • 1 Downloads

Abstract

The stability of the zonal axisymmetric quasi-geostrophic hydrostatic solution to the equations of atmospheric dynamics that is determined by the horizontal temperature gradient is studied. Time-dependent regions of unstable solutions specified by the Rayleigh number describe ordinary convective (baroclinic) processes and the long-term weak growth of disturbances under the action of the centrifugal forces arising from the Earth’s rotation. Comparison with a centrifugal hydrodynamic instability is made. The spatiotemporal structure of the corresponding geophysical fields is described.

Keywords

Rayleigh Number Oceanic Physic Asymptotic Form Instability Region Baroclinic Instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Gledzer, E. B. Gledzer, F. V. Dolzhanskii, and V. M. Ponomarev, “Hadley and Rossby Regimes in a Simple Model of Convection of a Rotating Fluid,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 435–459 (2006) [Izv., Atmos. Ocean. Phys. 42, 399–422 (2006)].Google Scholar
  2. 2.
    F. V. Dolzhanskii, “On Mechanical Prototypes of Fundamental Hydrodynamic Invariants and Slow Manifolds,” Usp. Fiz. Nauk 175, 1257–1288 (2005).CrossRefGoogle Scholar
  3. 3.
    E. N. Lorenz, “Simplified Dynamical Equations Applied to the Rotating-Basin Experiments,” J. Atmos. Sci. 19, 39–51 (1962).CrossRefGoogle Scholar
  4. 4.
    F. V. Dolzhanskii and L. A. Pleshanova, “Simplest Nonlinear Model of Convection and Its Geophysical Application,” in Atmospheric Physics and Climate Problems, Ed. by G. S. Golitsyn and A. M. Yaglom (Nauka, Moscow, 1980), pp. 95–113 [in Russian].Google Scholar
  5. 5.
    D. Fultz, J. Kaiser, M. Fain, et al., “Experimental Investigations of the Spectrum of Thermal Convective Motions in Rotating Annulus,” Article 2B, Final Report, Contract AF 19(604)-8361, Dept. of Geophysical Sciences, Univ. of Chicago (1964).Google Scholar
  6. 6.
    R. Hide and P. Y. Mason, “Sloping Convection in a Rotating Fluid,” Adv. Phys. 24(1), 47–100 (1975).CrossRefGoogle Scholar
  7. 7.
    E. N. Lorenz, The Nature and the Theory of the General Circulation of the Atmosphere (Geneva, 1967; Gidrometeoizdat, Leningrad, 1970).Google Scholar
  8. 8.
    B. M. Boubnov, E. B. Gledzer, and E. J. Hopfinger, “Stratified Circular Couette Flow: Instability and Flow Regimes,” J. Fluid Mech. 292, 333–358 (1995).CrossRefGoogle Scholar
  9. 9.
    G. I. Marchuk, Numerical Methods in Weather Forecasting, Leningrad, 1967) [in Russian].Google Scholar
  10. 10.
    E. B. Gledzer and V. M. Ponomarev, “Instability of Bounded Flows with Elliptical Streamlines,” J. Fluid Mech. 240, 1–30 (1992).CrossRefGoogle Scholar
  11. 11.
    R. R. Kerswell, “Elliptical Instability,” Annu. Rev. Fluid Mech. 34, 83–113 (2002).CrossRefGoogle Scholar
  12. 12.
    A. S. Monin and A. M. Oboukhov, “Small Oscillations of the Atmosphere and the Adaptation of Meteorological Fields,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 11, 1360–1373 (1958).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations