Izvestiya, Atmospheric and Oceanic Physics

, Volume 44, Issue 1, pp 18–32 | Cite as

Dynamic stochastic systems, typical realization curve, and Lyapunov’s exponents

Article
  • 1 Downloads

Abstract

The relationship between a statistical description of dynamic stochastic systems on the basis of the ideas of statistical topography and the conventional analysis of Lyapunov stability of dynamic systems with the aid of Lyapunov’s exponents is discussed.

Keywords

Oceanic Physic Moment Function Planck Equation Statistical Topography Random Velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Klyatskin and D. Gurarii, “Coherent Phenomena in Stochastic Dynamic Systems,” Usp. Fiz. Nauk 169, 171–207 (1999) [Physics-Uspekhi 42, 165–198 (1999)].CrossRefGoogle Scholar
  2. 2.
    V. I. Klyatskin, “Statistics and Reality in Stochastic Dynamic Systems,” in Nonlinear Waves 2004 (IPF RAN, Nizhni Novgorod, 2005), pp. 256–286 [in Russian].Google Scholar
  3. 3.
    G. Nicolis and I. Prigogin, Exploring Complexity, An Introduction (Freeman W., New York, 1989).Google Scholar
  4. 4.
    M. B. Isichenko, “Percolation, Statistical Topography, and Transport in Random Media,” Rev. Mod. Phys. 64, 961–1043 (1992).CrossRefGoogle Scholar
  5. 5.
    B. Mehlig and M. Wilkinson, “Coagulation by Random Velocity Fields As a Kramers Problem,” Phys. Rev. Lett. 92, 250 602-1–250 602-4 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Wilkinson and B. Mehlig, “Caustics in Turbulent Aerosols,” Europhys. Lett. 71, 186–192 (2005).CrossRefGoogle Scholar
  7. 7.
    V. I. Klyatskin, Stochastic Equations through the Eye of the Physicist: Basic Concepts, Exact Results, and Asymptotic Approximations (Fizmatlit, Moscow, 2001; Elsevier, Amsterdam, 2005).Google Scholar
  8. 8.
    V. I. Klyatskin, Dynamics of Stochastic Systems. (Fizmatlit, Moscow, 2002; Elsevier, Amsterdam, 2005).Google Scholar
  9. 9.
    V. I. Klyatskin, Diffusion and Clustering of a Passive Additive in Random Hydrodynamic Flows (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  10. 10.
    M. R. Maxey and J. J. Riley, “Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow,” Phys. Fluids 26, 883–889 (1983).CrossRefGoogle Scholar
  11. 11.
    G. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1945; Gostekhizdat, Moscow, 1947).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  13. 13.
    A. I. Saichev and W. A. Woyczynski, “Probability Distributions of Passive Tracers in Randomly Moving Media,” in Stochastic Models in Geosystems, Ed. by S. A. Molchanov and W. A. Woyczynski (Springer, New York, 1996), Vol. 85, pp. 359–400.Google Scholar
  14. 14.
    C. L. Zirbel and E. Çinlar, “Mass Transport by Brownian Motion,” in Stochastic Models in Geosystems, Ed. by S. A. Molchanov and W. A. Woyczynski (Springer, New York, 1996), IMA Volumes in Mathematics and Its Applications, Vol. 85, pp. 459–492.CrossRefGoogle Scholar
  15. 15.
    Kh. Aref, “Development of Chaotic Advection,” Nelin. Din. 2(1), 111–133 (2006).CrossRefGoogle Scholar
  16. 16.
    V. I. Klyatskin and K. V. Koshel’, “Simplest Example of the Development of a Cluster-structured Passive Tracer Field in Random Flows,” Usp. Fiz. Nauk 170, 771–778 (2000) [Physics-Uspekhi 43, 717–723 (2000)].CrossRefGoogle Scholar
  17. 17.
    F. Mesinger and Y. Mintz, “Numerical Simulation of the 1970–1971 Eole Experiment, Numerical Simulation of Weather and Climate,” Technical Report No. 4 (Dept. of Meteorology of Univ. of California, Los Angeles, 1970).Google Scholar
  18. 18.
    F. Mesinger and Y. Mintz, “Numerical Simulation of the Clustering of the Constant-Volume Balloons in the Global Domain, Numerical Simulation of Weather and Climate,” Technical Report No. 5 (Dept. of Meteorology of Univ. of California, Los Angeles, 1970).Google Scholar
  19. 19.
    J. Er-El and R. L. Peskin, “Relative Diffusion of Constant-Level Balloons in the Southern Hemisphere,” J. Atmos. Sci. 38, 2264–2274 (1981).CrossRefGoogle Scholar
  20. 20.
    A. P. Mirabel’ and A. S. Monin, “Statistical Properties of Admixture Mixing by Two-Dimensional Turbulence,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19, 902–912 (1983).Google Scholar
  21. 21.
    S. Ott and J. Mann, “An Experimental Investigation of the Relative Diffusion of Particle Pairs in Three Dimensional Turbulent Flow,” J. Fluid Mech. 422, 207–223 (2000).CrossRefGoogle Scholar
  22. 22.
    V. I. Klyatskin and I. G. Yakushkin, “Stochastic Transport in Random Wave Fields,” Zh. Eksp. Teor. Fiz. 118, 849–862, (2000) [JETP 91, 736–747 (2000)].Google Scholar
  23. 23.
    P. B. Weichman and R. E. Glazman, “Turbulent Fluctuation and Transport of Passive Scalar by Random Wave Fields,” Phys. Rev. Lett. 83, 5011–5018 (1999).CrossRefGoogle Scholar
  24. 24.
    P. B. Weichman and R. E. Glazman, “Passive Scalar Transport by Travelling Wave Fields,” J. Fluid Mech. 420, 147–200 (2000).CrossRefGoogle Scholar
  25. 25.
    P. B. Weichman and R. E. Glazman, “Spatial Variations of a Passive Tracer in a Random Wave Field,” J. Fluid Mech. 453, 263–287 (2002).CrossRefGoogle Scholar
  26. 26.
    V. I. Klyatskin and A. I. Saichev, “Statistical Theory of the Diffusion of a Passive Tracer in a Random Velocity Field,” Zh. Eksp. Teor. Fiz. 111, 1297–1313 (1997) [JETP 84, 716–724 (1997)].Google Scholar
  27. 27.
    J. R. Cressman and W. I. Golburg, “Compressible Flow: Turbulence at the Surface,” J. Statist. Phys. 113, 875–883 (2003).CrossRefGoogle Scholar
  28. 28.
    J. R. Cressman, W. I. Golburg, and J. Schumacher, “Dispersion of Tracer Particles in a Compressible Flow,” Europhys. Lett. 66, 219–225 (2004).CrossRefGoogle Scholar
  29. 29.
    V. I. Klyatskin and T. Elperin, “Clustering of the Field of the Number Density of Low-Inertia Particles in Random Nondivergent Hydrodynamic Flows,” Zh. Eksp. Teor. Fiz. 122, 327–340 (2002) [JETP 95, 328–340 (2002)].Google Scholar
  30. 30.
    V. I. Klyatskin and T. Elperin, “Diffusion of Low-Inertia Particles in a Field of Random Forces and the Kramers Problem,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 817–823 (2002) [Izv., Atmos. Ocean. Phys. 38, 725–731 (2002)].Google Scholar
  31. 31.
    V. I. Klyatskin, “Diffusion and Clustering of a Sedimenting Tracer in Random Hydrodynamic Flows,” Zh. Eksp. Teor. Fiz. 126, 1153–1166 (2004) [JETP 99, 1005–1017 (2004)].Google Scholar
  32. 32.
    V. I. Klyatskin, “Propogation of Electromagnetic Waves in Randomly Inhomogeneous Media As a Problem of Statistical Mathematical Physics,” Usp. Fiz. Nauk 174(2), 177–195 (2004) [Physics-Uspekhi 47, 169–186 (2004)].CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations