Skip to main content
Log in

Dynamic stochastic systems, typical realization curve, and Lyapunov’s exponents

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The relationship between a statistical description of dynamic stochastic systems on the basis of the ideas of statistical topography and the conventional analysis of Lyapunov stability of dynamic systems with the aid of Lyapunov’s exponents is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Klyatskin and D. Gurarii, “Coherent Phenomena in Stochastic Dynamic Systems,” Usp. Fiz. Nauk 169, 171–207 (1999) [Physics-Uspekhi 42, 165–198 (1999)].

    Article  Google Scholar 

  2. V. I. Klyatskin, “Statistics and Reality in Stochastic Dynamic Systems,” in Nonlinear Waves 2004 (IPF RAN, Nizhni Novgorod, 2005), pp. 256–286 [in Russian].

    Google Scholar 

  3. G. Nicolis and I. Prigogin, Exploring Complexity, An Introduction (Freeman W., New York, 1989).

    Google Scholar 

  4. M. B. Isichenko, “Percolation, Statistical Topography, and Transport in Random Media,” Rev. Mod. Phys. 64, 961–1043 (1992).

    Article  Google Scholar 

  5. B. Mehlig and M. Wilkinson, “Coagulation by Random Velocity Fields As a Kramers Problem,” Phys. Rev. Lett. 92, 250 602-1–250 602-4 (2004).

    Article  Google Scholar 

  6. M. Wilkinson and B. Mehlig, “Caustics in Turbulent Aerosols,” Europhys. Lett. 71, 186–192 (2005).

    Article  Google Scholar 

  7. V. I. Klyatskin, Stochastic Equations through the Eye of the Physicist: Basic Concepts, Exact Results, and Asymptotic Approximations (Fizmatlit, Moscow, 2001; Elsevier, Amsterdam, 2005).

    Google Scholar 

  8. V. I. Klyatskin, Dynamics of Stochastic Systems. (Fizmatlit, Moscow, 2002; Elsevier, Amsterdam, 2005).

    Google Scholar 

  9. V. I. Klyatskin, Diffusion and Clustering of a Passive Additive in Random Hydrodynamic Flows (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  10. M. R. Maxey and J. J. Riley, “Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow,” Phys. Fluids 26, 883–889 (1983).

    Article  Google Scholar 

  11. G. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1945; Gostekhizdat, Moscow, 1947).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

    Google Scholar 

  13. A. I. Saichev and W. A. Woyczynski, “Probability Distributions of Passive Tracers in Randomly Moving Media,” in Stochastic Models in Geosystems, Ed. by S. A. Molchanov and W. A. Woyczynski (Springer, New York, 1996), Vol. 85, pp. 359–400.

    Google Scholar 

  14. C. L. Zirbel and E. Çinlar, “Mass Transport by Brownian Motion,” in Stochastic Models in Geosystems, Ed. by S. A. Molchanov and W. A. Woyczynski (Springer, New York, 1996), IMA Volumes in Mathematics and Its Applications, Vol. 85, pp. 459–492.

    Chapter  Google Scholar 

  15. Kh. Aref, “Development of Chaotic Advection,” Nelin. Din. 2(1), 111–133 (2006).

    Article  Google Scholar 

  16. V. I. Klyatskin and K. V. Koshel’, “Simplest Example of the Development of a Cluster-structured Passive Tracer Field in Random Flows,” Usp. Fiz. Nauk 170, 771–778 (2000) [Physics-Uspekhi 43, 717–723 (2000)].

    Article  Google Scholar 

  17. F. Mesinger and Y. Mintz, “Numerical Simulation of the 1970–1971 Eole Experiment, Numerical Simulation of Weather and Climate,” Technical Report No. 4 (Dept. of Meteorology of Univ. of California, Los Angeles, 1970).

    Google Scholar 

  18. F. Mesinger and Y. Mintz, “Numerical Simulation of the Clustering of the Constant-Volume Balloons in the Global Domain, Numerical Simulation of Weather and Climate,” Technical Report No. 5 (Dept. of Meteorology of Univ. of California, Los Angeles, 1970).

    Google Scholar 

  19. J. Er-El and R. L. Peskin, “Relative Diffusion of Constant-Level Balloons in the Southern Hemisphere,” J. Atmos. Sci. 38, 2264–2274 (1981).

    Article  Google Scholar 

  20. A. P. Mirabel’ and A. S. Monin, “Statistical Properties of Admixture Mixing by Two-Dimensional Turbulence,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19, 902–912 (1983).

    Google Scholar 

  21. S. Ott and J. Mann, “An Experimental Investigation of the Relative Diffusion of Particle Pairs in Three Dimensional Turbulent Flow,” J. Fluid Mech. 422, 207–223 (2000).

    Article  Google Scholar 

  22. V. I. Klyatskin and I. G. Yakushkin, “Stochastic Transport in Random Wave Fields,” Zh. Eksp. Teor. Fiz. 118, 849–862, (2000) [JETP 91, 736–747 (2000)].

    Google Scholar 

  23. P. B. Weichman and R. E. Glazman, “Turbulent Fluctuation and Transport of Passive Scalar by Random Wave Fields,” Phys. Rev. Lett. 83, 5011–5018 (1999).

    Article  Google Scholar 

  24. P. B. Weichman and R. E. Glazman, “Passive Scalar Transport by Travelling Wave Fields,” J. Fluid Mech. 420, 147–200 (2000).

    Article  Google Scholar 

  25. P. B. Weichman and R. E. Glazman, “Spatial Variations of a Passive Tracer in a Random Wave Field,” J. Fluid Mech. 453, 263–287 (2002).

    Article  Google Scholar 

  26. V. I. Klyatskin and A. I. Saichev, “Statistical Theory of the Diffusion of a Passive Tracer in a Random Velocity Field,” Zh. Eksp. Teor. Fiz. 111, 1297–1313 (1997) [JETP 84, 716–724 (1997)].

    Google Scholar 

  27. J. R. Cressman and W. I. Golburg, “Compressible Flow: Turbulence at the Surface,” J. Statist. Phys. 113, 875–883 (2003).

    Article  Google Scholar 

  28. J. R. Cressman, W. I. Golburg, and J. Schumacher, “Dispersion of Tracer Particles in a Compressible Flow,” Europhys. Lett. 66, 219–225 (2004).

    Article  Google Scholar 

  29. V. I. Klyatskin and T. Elperin, “Clustering of the Field of the Number Density of Low-Inertia Particles in Random Nondivergent Hydrodynamic Flows,” Zh. Eksp. Teor. Fiz. 122, 327–340 (2002) [JETP 95, 328–340 (2002)].

    Google Scholar 

  30. V. I. Klyatskin and T. Elperin, “Diffusion of Low-Inertia Particles in a Field of Random Forces and the Kramers Problem,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 817–823 (2002) [Izv., Atmos. Ocean. Phys. 38, 725–731 (2002)].

    Google Scholar 

  31. V. I. Klyatskin, “Diffusion and Clustering of a Sedimenting Tracer in Random Hydrodynamic Flows,” Zh. Eksp. Teor. Fiz. 126, 1153–1166 (2004) [JETP 99, 1005–1017 (2004)].

    Google Scholar 

  32. V. I. Klyatskin, “Propogation of Electromagnetic Waves in Randomly Inhomogeneous Media As a Problem of Statistical Mathematical Physics,” Usp. Fiz. Nauk 174(2), 177–195 (2004) [Physics-Uspekhi 47, 169–186 (2004)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Klyatskin.

Additional information

Original Russian Text © V.I. Klyatskin, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 1, pp. 21–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyatskin, V.I. Dynamic stochastic systems, typical realization curve, and Lyapunov’s exponents. Izv. Atmos. Ocean. Phys. 44, 18–32 (2008). https://doi.org/10.1134/S0001433808010039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808010039

Keywords

Navigation