Izvestiya, Atmospheric and Oceanic Physics

, Volume 44, Issue 1, pp 3–17 | Cite as

Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part I. Low-parameter models



The paper focuses on the simulation of the quasi-biennial oscillations (QBOs) of zonal velocity in the equatorial stratosphere. Low-parameter models are used to examine two mechanisms for excitation of the QBO: one through the interaction of planetary waves with the mean flow at critical levels and another through gravity-wave obliteration. The possible use of each of these mechanisms for generating the QBO is shown, the ranges of parameter values where this generation is possible are determined, and the dependences of the period and amplitude of the limit cycle on the model parameters are analyzed. A relative role of waves of different scales in the formation of the period of the oscillations of zonal wind is studied with a coupled model combining both mechanisms. The conditions that are required to reproduce the QBO in general circulation models are discussed.


Gravity Wave Zonal Wind Oceanic Physic Phase Speed Planetary Wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kistler, et al., “The NCEP/NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation,” Bull. Am. Meteorol. Soc. 82, 247–266 (2001).CrossRefGoogle Scholar
  2. 2.
    P. H. Haynes, “The Latitudinal Structure of the Quasi-Biennial Oscillation,” Q. J. R. Meteorol. Soc. 124, 2645–2670 (1998).CrossRefGoogle Scholar
  3. 3.
    M. P. Baldwin, et al., “The Quasi-Biennial Oscillation,” Rev. Geophys. 39, 179–229 (2001).CrossRefGoogle Scholar
  4. 4.
    J. R. Holton and H. C. Tan, “The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Atmospheric Circulation at 50 mb,” J. Atmos. Sci. 37, 2200–2208.Google Scholar
  5. 5.
    T. J. Dunkerton and M. P. Baldwin, “Quasi-Biennial Modulation of Planetary-Wave Fluxes in the Northern Hemisphere Winter,” J. Atmos. Sci. 48, 1043–1061 (1991).CrossRefGoogle Scholar
  6. 6.
    W. M. Gray, J. D. Sheaffer, and J. A. Knaff, “Influence of the Stratospheric QBO on ENSO Variability,” J. Meteorol. Soc. Jpn. 70, 975–995 (1992).CrossRefGoogle Scholar
  7. 7.
    M. P. Baldiwn and T. J. Junkerton, “Quasi-Biennial Modulations of the Southern Hemisphere Stratospheric Polar Vortex,” Geophys. Res. Lett. 25, 3343–3346 (1998).CrossRefGoogle Scholar
  8. 8.
    A. N. Gruzdev and V. A. Bezverkhnii, “Long-Term Variations in the Quasi-Biennial Oscillation of the Equatorial Stratospheric Wind,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35, 773–785 (1999) [Izv., Atmos. Ocean. Phys. 35, 700–711 (1999)].Google Scholar
  9. 9.
    T. J. Dunkerton, “Annual Variation of Deseasonalized Mean Flow Acceleration in the Equatorial Lower Stratosphere,” J. Meteorol. Soc. Jpn. 68, 499–508 (1990).CrossRefGoogle Scholar
  10. 10.
    J. A. Knaff, “Evidence of a Stratospheric QBO Modulation of Tropical Covection,” Paper No. 520 (Dept. of Atmospheric Science, Colorado State Univ., Fort Collins, 1993).Google Scholar
  11. 11.
    W. J. Randel, F. Wu, R. Swinbank, et al., “Global QBO Circulation Derived from UKMO Stratospheric Analyses,” J. Atmos. Sci. 56, 457–474 (1999).CrossRefGoogle Scholar
  12. 12.
    J. R. Holton, P. H. Haynes, M. E. McInture, et al., “Stratosphere-Troposphere Exchange,” Rev. Geophys. 33, 403–439 (1995).CrossRefGoogle Scholar
  13. 13.
    W. J. Randel and J. B. Cobb, “Coherent Variations of Monthly Mean Column Ozone and Lower Stratospheric Temperature,” J. Geophys. Res. D 99, 5433–5447 (1994).CrossRefGoogle Scholar
  14. 14.
    D. B. A. Jones, H. R. Schneider, and M. B. McElroy, “Effects of the Quasi-Biennial Oscillation on the Zonally Averaged Transport of Tracers,” J. Geophysics. Res. D 103, 11235–11249 (1998).CrossRefGoogle Scholar
  15. 15.
    C. R. Trepte and M. H. Hitchman, “Tropical Stratospheric Circulation Deduced from Satellite Aerosol Data,” Nature 355, 626–628 (1992).CrossRefGoogle Scholar
  16. 16.
    V. S. Purganskii, “On the Motion of the Atmosphere in the Equatorial Latitudes,” Meteorol. Gidrol., No. 11, 3–13 (1965).Google Scholar
  17. 17.
    E. B. Gledzer and A. M. Oboukhov, “Quasi-Biennial Oscillation As a Parametric Phenomenon in the Climate System,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18, 1154–1158 (1982).Google Scholar
  18. 18.
    I. I. Mokhov, V. A. Bezverkhnii, and A. V. Eliseev, “Atmospheric Temperature Quasi-Biennial Oscillation and Its Tendencies for Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 33, 579–587 (1997) [Izv., Atmos. Ocean. Phys. 33, 533–541 (1997)].Google Scholar
  19. 19.
    B. A. Boville and W. J. Randel, “Equatorial Waves in a Stratospheric GCM: Effects of Vertical Resolution,” J. Atmos. Sci. 49, 785–801 (1992).CrossRefGoogle Scholar
  20. 20.
    Y. Hayashi and D. G. Golder, “Kelvin and Mixed Rossby-Gravity Waves Appearing in the GFDL “SKYHI” General Circulation Model and the FGGE Data Set: Implications for Their Generation Mechanism and Role in the QBO,” J. Meteorol. Soc. Jpn. 72, 901–935 (1994).CrossRefGoogle Scholar
  21. 21.
    M. A. Giorgetta, et al., “Climatology and Forcing of the Quasi-Biennial Oscillation in the MAECHAM5 Model,” J. Clim. 19, 3882–1901 (2006).CrossRefGoogle Scholar
  22. 22.
    J. R. Holton and R. S. Lindzen, “An Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere,” J. Atmos. Sci. 29, 1076–1080 (1972).CrossRefGoogle Scholar
  23. 23.
    T. J. Dunkerton, “The Role of Gravity Waves in the Quasibiennial Oscillation,” J. Geophys. Res. D 102, 26053–26076 (1997).CrossRefGoogle Scholar
  24. 24.
    T. J. Dunkerton, “Nonlinear Propagation of Zonal Winds in an Atmosphere with Newtonian Cooling and Equatorial Wave Driving,” J. Atmos. Sci. 48, 236–263 (1991a).CrossRefGoogle Scholar
  25. 25.
    R. A. Plumb, “The Interaction of Two Internal Waves with the Mean Flow: Implications of the Theory of the Quasi-Biennial Oscillation,” J. Atmos. Sci. 34, 1847–1858 (1977).CrossRefGoogle Scholar
  26. 26.
    C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 1. Basic Formulation,” J. Atmos. Terr. Phys. 59, 371–386 (1997).CrossRefGoogle Scholar
  27. 27.
    C. O. Hines, “Doppler-Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 2. Broad and Quasi-Monochromatic Spectra, and Implementation,” J. Atmos. Terr. Phys. 59, 387–400 (1997).CrossRefGoogle Scholar
  28. 28.
    J. R. Holton, The Dynamic Meteorology of the Stratosphere and Mesosphere, Meteorological Monographs, Vol. 15 (American Meteorological Society, Boston, 1975).CrossRefGoogle Scholar
  29. 29.
    I. I. Mokhov and A. V. Eliseev, “Changes in the Characteristics of the Quasi-Biennial Oscillation of Zonal Wind and Temperature in the Equatorial Lower Stratosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34, 327–336 (1998) [Izv., Atmos. Ocean. Phys. 34, 291–299 (1998)].Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • D. V. Kulyamin
    • 1
  • E. M. Volodin
    • 1
  • V. P. Dymnikov
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations