Advertisement

Review Journal of Chemistry

, Volume 9, Issue 2, pp 127–152 | Cite as

Synthesis and Properties of Zinc Oxide Nanoparticles: Advances and Prospects

  • G. T. MazitovaEmail author
  • K. I. Kienskaya
  • D. A. Ivanova
  • I. A. Belova
  • I. A. Butorova
  • M. V. Sardushkin
Article
  • 4 Downloads

Abstract

The physical, chemical, and biological methods for the synthesis of zinc oxide nanoparticles are considered; their advantages and disadvantages are analyzed. The relationship between the method of synthesis and the properties of the systems obtained is shown. The unique optical and antibacterial properties of zinc oxide nanoparticles and the relevant areas of their practical applications are discussed. The dependence of the antibacterial properties of zinc oxide on the shape and size of its particles is revealed.

Keywords:

nanoparticles zinc oxide methods for producing nanoparticles optical properties antibacterial properties 

Notes

ACKNOWLEDGMENTS

This study was supported by the Mendeleev University of Chemical Technology (project no. 003-2018).

REFERENCES

  1. 1.
    Shul’gina, T.A., Norkin, I.A., and Puchin’yan, D.M., Fundam. Issled., 2012, no. 7–2.Google Scholar
  2. 2.
    Rempel’, A.A., and Valeeva, A.A., Materialy i metody nanotekhnologii: uchebnoe posobie (Materials and Methods of Nanotechnology: A Textbook), Yekaterinburg: Ural. Gos. Univ., 2015.Google Scholar
  3. 3.
    Guseva, A.F., Neiman, A.Ya., and Nokhrin, S.S., Metody polucheniya nanorazmernykh materialov (Methods for Producing Nanoscale Materials), Yekaterinburg: Ural. Gos. Univ., 2008.Google Scholar
  4. 4.
    Wang, Y. and Xia, Y., Nano Lett., 2004, vol. 4, no. 10, p. 2047.CrossRefGoogle Scholar
  5. 5.
    Kolesnik, I.V. and Eliseev, A.A., Khimicheskie metody sinteza nanomaterialov: metodicheskoe posobie (Chemical Methods for the Synthesis of Nanomaterials: A Manual), Moscow: Mosk. Gos. Univ., 2011.Google Scholar
  6. 6.
    Van der Rul, H., et al., J. Sol–Gel Sci. Technol., 2006, vol. 39, no. 1, p. 41.CrossRefGoogle Scholar
  7. 7.
    Zhou, Y., et al., Mater. Res. Bull., 2008, vol. 43, nos. 8–9, p. 2113.CrossRefGoogle Scholar
  8. 8.
    Applerot, G., et al., Adv. Funct. Mater., 2009, vol. 19, no. 6, p. 842.Google Scholar
  9. 9.
    Brichkin, S.B., Spirin, M.G., and Nikolenko L.M., et al., High Energy Chem., 2008, vol. 42, no. 7, p. 516.CrossRefGoogle Scholar
  10. 10.
    Ristić, M., J. Alloys Compd., 2005, vol. 397, nos. 1–2, p. L1.CrossRefGoogle Scholar
  11. 11.
    Selvarajan, E. and Mohanasrinivasan, V., Mater. Lett., 2013, vol. 112, p. 180.CrossRefGoogle Scholar
  12. 12.
    Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., and Buszewski, B., Adv. Colloid Interface Sci., 2017, vol. 249, p. 37.CrossRefGoogle Scholar
  13. 13.
    Myslitskaya, N.A., Ivanov, A.M., and Bryukhanov, V.V., Izv. Kaliningrad. Gos. Tech. Univ., 2015, vol. 36, no. 1, p. 195.Google Scholar
  14. 14.
    Svetlichnyi, V.A. and Lapin, I.N., Russ. Phys. J., 2013, vol. 56, no. 5, p. 581.CrossRefGoogle Scholar
  15. 15.
    Ishikawa, Y., Shimizu, Y., Sasaki, T., and Koshizaki, N., J. Colloid Interface Sci., 2006, vol. 300, p. 612.CrossRefGoogle Scholar
  16. 16.
    Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T., J. Phys. Chem. B, 2000, vol. 104, no. 39, p. 9111.CrossRefGoogle Scholar
  17. 17.
    Simakin, A.V., Voronov, V.V., and Shafeev, G.A., Tr. Inst. Obshch. Fiz. im. A.M. Prokhorova, Ross. Akad. Nauk, 2004, vol. 64, p. 83.Google Scholar
  18. 18.
    Yang, G.W., Prog. Mater. Sci., 2007, vol. 52, no. 4, p. 648.CrossRefGoogle Scholar
  19. 19.
    Kim, K.K., et al., Chem. Phys. Lett., 2011, vol. 511, nos. 1–3, p. 116.CrossRefGoogle Scholar
  20. 20.
    Mafuné, F., Kohno, J., Takeda, Y., and Kondow, T., J. Phys. Chem. B, 2000, vol. 104, no. 35, p. 8333.CrossRefGoogle Scholar
  21. 21.
    Mintcheva, N., Aljulaih, A., Wunderlich, W., Kulinich, S., and Iwamori, S., Materials, 2018, vol. 11, no. 7, p. 1127.CrossRefGoogle Scholar
  22. 22.
    Gurav, A., Kodas, T., Pluym, T., and Yun Xiong, Aerosol Sci. Technol., 1993, vol. 19, p. 411.CrossRefGoogle Scholar
  23. 23.
    Shinde, S.S., Bhosale, C.H., and Rajpure, K.Y., J. Mol. Struct., 2012, vol. 1021, p. 123.CrossRefGoogle Scholar
  24. 24.
    Vimalkumar, T.V., Poornima, N., Jinesh, K.B., Sudha Kartha, C., and Vijayakumar, K.P., Appl. Surf. Sci., 2011, vol. 257, p. 8334.CrossRefGoogle Scholar
  25. 25.
    Gabás, M., Barrett, N.T., Ramos-Barrado, J.R., Gota, S., Rojas, T.C., and López-Escalante, M.C., Sol. Energy Mater. Sol. Cells, 2009, vol. 93, p. 1356.CrossRefGoogle Scholar
  26. 26.
    Lashkova, N.A., Maksimov, A.I., Matyushkin, L.B., Moshnikov, V.A., Ryabko, A.A., Somov, P.A., and Tulenin, S.S., Butlerov. Soobshch., 2015, vol. 42, no. 6, p. 48.Google Scholar
  27. 27.
    Karpanin, O.V., Metal’nikov, A.M., Pivkin, A.Yu., and Solov’ev, V.A., Nadezhnost’ i kachestvo: Tr. Mezhdunar. simp. (Reliability and Quality: Proc. Int. Symp.), Penza: Penzensk. Gos. Univ., 2011, p. 165.Google Scholar
  28. 28.
    Lashkova, N.A., Maximov, A.I., Ryabko, A.A., Bobkov, A.A., Moshnikov, V.A., and Terukov, E.I., Semiconductors, 2016, vol. 50, no. 9, p. 1254.CrossRefGoogle Scholar
  29. 29.
    Bagamadova, A.M., Mamedov, V.V., Asvarov, A.Sh., Omaev, A.K., and Makhmudov, S.Sh., Zh. Tekh. Fiz., 2012, no. 4, p. 156.Google Scholar
  30. 30.
    Belosludtsev, A.P., Kuznetsov, D.V., Lysov, D.V., Yudin, A.G., and Kondakov, S.E., Vestn. Mosk. Gos. Univ., Ser. 2: Khim., 2012, vol. 53, no.5, p. 339.Google Scholar
  31. 31.
    Ivanovskii, G.F. and Petrov, V.I., Ionno-plazmennaya obrabotka materialov (Ion-Plasma Processing of Materials), Moscow: Radio Svyaz’, 1986.Google Scholar
  32. 32.
    Ataev, B.M., Kamilov, I.K., Bogamadova, A.M., Magomedov, V.V., Omaev, A.K., and Rabadanov, M.Kh., Tech. Phys., 1999, vol. 44, no. 11, p. 1391.CrossRefGoogle Scholar
  33. 33.
    Zakirova, R.M., Krylov, P.N., Suvorov, I.A., and Fedotova, I.V., Vestn. Udmurt. Univ., 2012, no. 4, p. 14.Google Scholar
  34. 34.
    Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys., 1985, vol. 24, p. L605.CrossRefGoogle Scholar
  35. 35.
    Jun-ichi Nomoto, Jun-ichi Oda, Toshihiro Miyata, and Tadatsugu Minami, Thin Solid Films, 2010, vol. 519, p. 1587.CrossRefGoogle Scholar
  36. 36.
    Vol’pyan, O.D., Obod, Yu.A., and Yakovlev, P.P., Prik. Fiz., 2010, no. 3, p. 24.Google Scholar
  37. 37.
    Qu, J., Yuan, X., Wang, X., and Shao, P., Environ. Pollut., 2011, vol. 159, no. 7, p. 1783.CrossRefGoogle Scholar
  38. 38.
    Zaitsev, S.V., Vashchilin, V.S., Kolesnik, V.V., Limarenko, M.V., Prokhorenkov, D.S., and Evtushenko, E.I., Vestn. Irkutsk. Gos. Tekh. Univ., 2017, vol. 21, no. 8, p.167.Google Scholar
  39. 39.
    Khokhlov, E.A., Dokl. Belarus. Gos. Univ. Inform. Radioelectron., 2008, vol. 35, p. 71.Google Scholar
  40. 40.
    Chhabra, V., et al., Tenside, Surfactants, Deterg., 1997, vol. 34, no. 3, p. 156.Google Scholar
  41. 41.
    Kuzovkova, A.A., Cand. Sci. (Chem.) Dissertation, Moscow: Russ. Univ. Chem. Technol., 2013.Google Scholar
  42. 42.
    Li, X., He, G., Xiao, G., Liu, H., and Wang, M., J. Colloid Interface Sci., 2009, vol. 333, p. 465.CrossRefGoogle Scholar
  43. 43.
    Sarkar, D., Tikku, S., Thapar, V., Srinivasa, R.S., and Khilar, K.C., Colloids Surf., A, 2011, vol. 381, nos. 1–3, p. 123.CrossRefGoogle Scholar
  44. 44.
    Kumar, H. and Rani, R., Int. Lett. Chem., Phys. Astron., 2013, vol. 19, p. 26.Google Scholar
  45. 45.
    Rui Li and Yantao Wang, Adv. Mater. Res., 2012, no. 621, p. 143.Google Scholar
  46. 46.
    Fendler, J.H., Chem. Rev., 1987, vol. 87, p. 877.CrossRefGoogle Scholar
  47. 47.
    Handbook of Sol–Gel Science and Technology: Processing, Characterization, and Applications, Sakka, S., Ed., Boston: Clawer Academic, 2005.Google Scholar
  48. 48.
    Jones, R.W., Met. Mater., 1988, vol. 4, no. 12, p. 748.Google Scholar
  49. 49.
    Bochkareva, S.S., Izv. VUZov, Prikl. Khim. Biotekhnol., 2016, vol. 6, no. 3, p. 81.Google Scholar
  50. 50.
    Shabanova, N.A., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Fundamentals of Sol–Gel Technology of Nanodispersed Silica), Moscow: Akademkniga, 2004.Google Scholar
  51. 51.
    Gugliemy, M., J. Non-Cryst. Solids, 1988, vol. 100, p. 16.CrossRefGoogle Scholar
  52. 52.
    Spanhel, L. and Anderson, M.A., J. Am. Chem. Soc., 1991, vol. 113, p. 2826.CrossRefGoogle Scholar
  53. 53.
    Jurablu, S., Farahmandjou, M., and Firoozabadi, T.P., J. Sci., Islamic Repub. Iran, 2015, vol. 26, no. 3, p. 281.Google Scholar
  54. 54.
    Hayat, K., Gondal, M.A., Khaled, M.M., Ahmed, S., and Ahsan, M.S., Appl. Catal., A, 2011, vol. 393, p. 122.Google Scholar
  55. 55.
    Meulenkamp, E.A., J. Phys. Chem. B, 1998, vol. 102, no. 29, p. 5566.CrossRefGoogle Scholar
  56. 56.
    Vokhmintsev, K.V. and Trusova, E.A., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 7, p. 112.Google Scholar
  57. 57.
    Sharma, A., Singh, B.P., Dhar, S., Gondorf, A., and Spasova, M., Surf. Sci., 2012, vol. 606, p. L13.CrossRefGoogle Scholar
  58. 58.
    Caglar, M. and Yakuphanoglu, F., Appl. Surf. Sci., 2012, vol. 258, p. 7760.CrossRefGoogle Scholar
  59. 59.
    Tari, O., Aronne, A., Addonizio, M.L., Daliento, S., Fanelli, E., and Pernice, P., Sol. Energy Mater. Sol. Cells, 2012, vol. 105, p. 179.CrossRefGoogle Scholar
  60. 60.
    Vishwas, M., Narasimha K. Rao, Arjuna Gowda, K.V., and Chakradhard, R.P.S., Spectrochim. Acta, Part A, 2010, vol. 77, p. 330.CrossRefGoogle Scholar
  61. 61.
    Huang, N., Zhu, M.W., Gao, L.J., Gong, J., Sun, C., and Jiang, X., Appl. Surf. Sci., 2011, vol. 257, p. 6026.CrossRefGoogle Scholar
  62. 62.
    Shi, L., Tao, K., Yang, R., Meng, F., Xing, C., and Tsubaki, N., Appl. Catal., A, 2011, vol. 401, p. 46.Google Scholar
  63. 63.
    Caglar, M., Caglar, Y., Aksoy, S., and Ilican, S., Appl. Surf. Sci., 2010, vol. 256, p. 4966.CrossRefGoogle Scholar
  64. 64.
    Zhu, Z., Yang, D., and Liu, H., Adv. Powder Technol., 2011, vol. 22, p. 493.CrossRefGoogle Scholar
  65. 65.
    Kolesnik, I.V. and Eliseev, A.A., Khimicheskie metody sinteza nanomaterialov: metodicheskoe posobie (Chemical Methods for the Synthesis of Nanomaterials: A Manual), Moscow: Mosk. Gos. Univ., 2011.Google Scholar
  66. 66.
    Vayssieres, L., Keis, K., Lindquist, S.E., and Hagfeldt, A., J. Phys. Chem. B, 2001, vol. 105, p. 3350.CrossRefGoogle Scholar
  67. 67.
    Vayssieres, L., Adv. Mater., 2003, vol. 15, no. 5, p. 464.CrossRefGoogle Scholar
  68. 68.
    Baruah, S. and Dutta, J., Sci. Technol. Adv. Mater., 2009, vol. 10, no. 1, 013001.CrossRefGoogle Scholar
  69. 69.
    Ma, S., Li, R., Lv, C., Xu, W., and Gou, X., J. Hazard. Mater., 2011, vol. 192, p. 730.CrossRefGoogle Scholar
  70. 70.
    Podrezova, L.V., Cand. Sci. (Chem.) Dissertation, Almaty: Satbayev Univ., 2013.Google Scholar
  71. 71.
    Somov, P.A. and Maksimov, A.I., Molodoi Uchenyi, 2014, no. 8, p. 255.Google Scholar
  72. 72.
    Govender, K., Boyle, D.S., and Kenway, P.B., J. Mater. Chem., 2004, vol. 14, p. 2575.CrossRefGoogle Scholar
  73. 73.
    Musić, S., Popović, S., Maljković, M., and Dragčević, Đ., J. Alloys Compd., 2002, vol. 347, nos. 1–2, p. 324.CrossRefGoogle Scholar
  74. 74.
    Rodríguez-Paéz, J.E., Caballero, A.C., Villegas, M., Moure, C., Durán, P., and Fernández, J.F., J. Eur. Ceram. Soc., 2001, vol. 21, no. 7, p. 925.CrossRefGoogle Scholar
  75. 75.
    Nikolaeva, N.S., Ivanov, V.V., and Shubin,A.A., Zh. Sib. Fed. Univ., 2010, vol. 2, p. 153.Google Scholar
  76. 76.
    Dzhenloda, R.Kh. and Koroleva, M.Yu., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 7, p. 81.Google Scholar
  77. 77.
    Dzhenloda, R.Kh., Volostykh, M.V., and Geidt, P.V., Usp. Khim. Khim. Tekhnol., 2010, vol. 24, no. 7, p. 84.Google Scholar
  78. 78.
    Qu, J., Yuan, X., Wang, X., and Shao, P., Environ. Pollut., 2011, vol. 159, no. 7, p. 1783.CrossRefGoogle Scholar
  79. 79.
    Selvarajan, E. and Mohanasrinivasan, V., Mater. Lett., 2013, vol. 112, p. 180.CrossRefGoogle Scholar
  80. 80.
    Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., and Kalinina, N.O., Acta Naturae, 2014, vol. 6, no. 1, p. 35.Google Scholar
  81. 81.
    Mirzaei, H. and Darroudi, M., Ceram. Int., 2017, vol. 43, no. 1, p. 907.CrossRefGoogle Scholar
  82. 82.
    Larin, S.L., Budko, E.V., Khabarov, A.A., Lipatov, V.A., and Zvyagintseva, A.R., Chelovek Ego Zdorov’e, 2016, no. 3, p. 100.Google Scholar
  83. 83.
    Babushkina, I.V., Chebotareva, E.G., Elbudu, M., Orlov, S.B., Borodulina, E.V., and Borodulin, V.B., Vestn. Ross. Univ. Druzhby Narodov, 2012, no. 3, p. 22.Google Scholar
  84. 84.
    Jayaseelan, C., Abdul Rahuman, A., Vishnu Kirthi, A., Marimuthu, S.T., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., and Bhaskara Rao, K.V., Spectrochim. Acta, Part A, 2012, vol. 90, p. 78.CrossRefGoogle Scholar
  85. 85.
    Sivakumar, P.M., Balaji, S., Prabhawathi, V., Neelakandan, R., Manoharan, P.T., and Doble, M., Carbohydr. Polym., 2010, vol. 79, p. 717.CrossRefGoogle Scholar
  86. 86.
    Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., and Buszewski, B., Adv. Colloid Interface Sci., 2017, vol. 249, p. 37.CrossRefGoogle Scholar
  87. 87.
    Adams, L.K., Lyon, D.Y., and Alvarez, P.J.J., Water Res., 2006, vol. 40, no. 19, p. 3527.CrossRefGoogle Scholar
  88. 88.
    Kasemets, K., Ivask, A., Dubourguier, H.-C., and Kahru, A., Toxicol. in Vitro, 2009, vol. 23, no. 6, p. 1116.CrossRefGoogle Scholar
  89. 89.
    Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F., and Fiévet, F., Nano Lett., 2006, vol. 6, no. 4, p. 866.CrossRefGoogle Scholar
  90. 90.
    Jones, N., Ray, B., Ranjit, K.T., and Manna, A.C., FEMS Microbiol. Lett., 2008, vol. 279, no. 1, p. 71.CrossRefGoogle Scholar
  91. 91.
    Zhang, L., et al., Prog. Nat. Sci., 2008, vol. 18, no. 8, p. 939.CrossRefGoogle Scholar
  92. 92.
    Heinlaan, M., et al., Chemosphere, 2008, vol. 71, no. 7, p. 1308.CrossRefGoogle Scholar
  93. 93.
    Huang, Z., et al., Langmuir, 2008, vol. 24, p. 4140.CrossRefGoogle Scholar
  94. 94.
    Buzea, C., Pacheco, I.I., and Robbie, K., Biointerphases, 2007, vol. 2, no. 4, p. MR17.CrossRefGoogle Scholar
  95. 95.
    Gordon, T., et al., Colloids Surf., A, 2011, vol. 374, nos. 1–3, p. 1.CrossRefGoogle Scholar
  96. 96.
    Reddy, K.M., et al., Appl. Phys. Lett., 2007, vol. 90, no. 21, 213902.CrossRefGoogle Scholar
  97. 97.
    Xie, Y., et al., Appl. Environ. Microbiol., 2011, vol. 77, no. 7, p. 2325.CrossRefGoogle Scholar
  98. 98.
    Jeyasubramanian, K., Hikku, G.S., and Sharma, R.K., J. Water Process. Eng., 2015, vol. 8, p. 35.CrossRefGoogle Scholar
  99. 99.
    Liu, Y., et al., J. Appl. Microbiol., 2009, vol. 107, no. 4, p. 1193.CrossRefGoogle Scholar
  100. 100.
    Mazitova, G.T., Khlopetski, O.G., Nepomnyashchaya, K.V., Kienskaya, K.I., and Butorova, I.A., Butlerov. Soobshch., 2017, vol. 52, no. 12, p. 119.Google Scholar
  101. 101.
    He, L., et al., Microbiol. Res., 2011, vol. 166, no. 3, p. 207.CrossRefGoogle Scholar
  102. 102.
    Kairyte, K., Kadys, A., and Luksiene, Z., J. Photochem. Photobiol., B, 2013, vol. 128, p. 78.CrossRefGoogle Scholar
  103. 103.
    Sonia, S., et al., Mater. Sci. Eng. C, 2017, vol. 79, p. 581.CrossRefGoogle Scholar
  104. 104.
    Fridman, R.A., Tekhnologiya kosmetiki (Cosmetics Technology), Moscow: Pishchevaya Promyshlennost’, 1984.Google Scholar
  105. 105.
    Staemmler, V., et al., Phys. Rev. Lett., 2003, vol. 90, no. 10, 106102.CrossRefGoogle Scholar
  106. 106.
    Sivakumar, P.M., Balaji, S., Prabhawathi, V., Neelakandan, R., Manoharan, P.T., and Doble, M., Carbohydr.  Polym., 2010, vol. 79, p. 717.CrossRefGoogle Scholar
  107. 107.
    Torshin, I.Yu., Gromova, O.A., Grishina, T.R., and Rudakov, K.V., Trudnyi Patsient, 2010, no. 3, p. 38.Google Scholar
  108. 108.
    Brooking, J., Davis, S.S., and Illum, L., J. Drug Targeting, 2001, vol. 9, no. 4, p. 267.CrossRefGoogle Scholar
  109. 109.
    Hsiao, I.L. and Huang, Y.J., Sci. Total Environ., 2011, vol. 409, no. 7, p. 1219.CrossRefGoogle Scholar
  110. 110.
    Hackenberg, S., et al., Toxicol. in Vitro, 2011, vol. 25, no. 3, p. 657.CrossRefGoogle Scholar
  111. 111.
    Ickrath, P., et al., Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 12, p. 1590.CrossRefGoogle Scholar
  112. 112.
    Cross, S.E., et al., Skin Pharmacol. Physiol., 2007, vol. 20, no. 3, p. 148.CrossRefGoogle Scholar
  113. 113.
    Liu, M., Kitai, A.H., and Mascher, P., J. Lumin., 1992, no. 54, p. 35.Google Scholar
  114. 114.
    Bylander, E.G., J. Appl. Phys., 1978, no. 49, p. 1188.Google Scholar
  115. 115.
    Meyer, B.K., Alves, H., Hofmann, D.M., et al., Phys. Status Solidi B, 2004, vol. 241, p. 231.CrossRefGoogle Scholar
  116. 116.
    Leiter, F.H., Alves, H.R., Hofstaetter, A., et al., Phys. Status Solidi B, 2001, vol. 226, no. 1, p. R4.CrossRefGoogle Scholar
  117. 117.
    Leiter, F.H., Alves, H.R., Romanov, N.G., et al., Phys. B (Amsterdam, Neth.), 2003, vol. 201, p. 340.Google Scholar
  118. 118.
    Özgür, Ü., Alivov, Ya.I., Liu, C., et al., J. Appl. Phys., 2005, vol. 98, 041301.CrossRefGoogle Scholar
  119. 119.
    Kohan, A.F., Ceder, G., Morgan, D., et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, 15019.CrossRefGoogle Scholar
  120. 120.
    Vlasenko, L.S. and Watkins, G.D., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, 035203.CrossRefGoogle Scholar
  121. 121.
    Chen, H., Gu, S., Tang, K., et al., J. Lumin., 2011, vol. 131, p. 1189.CrossRefGoogle Scholar
  122. 122.
    Leiter, F.H., Alves, H.R., Hofstaetter, A., et al., Phys. Status Solidi B, 2001, vol. 226, no. 1, p. R4.CrossRefGoogle Scholar
  123. 123.
    Leiter, F.H., Alves, H.R., Romanov, N.G., et al., Phys. B (Amsterdam, Neth.), 2003, vol. 201, p. 340.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. T. Mazitova
    • 1
    Email author
  • K. I. Kienskaya
    • 1
  • D. A. Ivanova
    • 1
  • I. A. Belova
    • 1
  • I. A. Butorova
    • 1
  • M. V. Sardushkin
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations