Review Journal of Chemistry

, Volume 9, Issue 2, pp 95–126 | Cite as

Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives

  • Chandravadivelu Gopi
  • Magharla Dasaratha DhanarajuEmail author


The phenothiazine nucleus is one of the most important and trusted heterocyclic ring, which is commonly found in natural products and medicinal agents. It was discovered during the 1940s, since many scientists were found various newer derivatives and established their biological activities. The recently developed phenothiazine derivatives were exhibiting significant activities such as tranquillizer, antibacterial, antiparkinsonian, antifungal, anticancer, antiviral, anti-inflammatory, antihistaminic, anti-malarial, anti-filarial, trypanocidal, anticonvulsant, analgesic, immunosuppressive and multidrug resistance reversal properties. In the presented study, an attempt had been made to systematize the recent research finding of many newer phenothiazine derivatives including method of synthesis, structure and evaluated in vitro and in vivo promising biological activities and pharmacological properties. This review emphasises the two decades of research work on newer synthesis, structure and biological activities of different phenothiazine derivatives.


phenothiazines synthesis biological activities anti-microbial agent anti-tumor activity anti-oxidants enzymes inhibitors 



All authors of this manuscript would like to thank Mr M.R. Vijaya Kumar, Research scholar, IIT-Banaras Hindu University, has supported exclusively to this review work and also we thank principal of GIET School of Pharmacy, Rajahmundry, for extend their support to complete our work time to time.


The author has declared no conflict of interest.


  1. 1.
    Ashoor, A., Lorke, D., Nurulain, A.M., Kury, L.A., Petroianu, G., Yang, K.S., and Oz, M., Eur. J. Pharmacol., 2011, vol. 673, no. 1, p. 25.CrossRefGoogle Scholar
  2. 2.
    Pluta, K., Morak-Młodawska, B., and Jeleń, M., Eur. J. Med. Chem., 2011, vol. 46, no. 8, p. 3179.CrossRefGoogle Scholar
  3. 3.
    Zieba, A., Czuba, Z.E., and Krol, W., Acta Pol. Pharm., 2012, vol. 69, no. 6, p. 1152.Google Scholar
  4. 4.
    Narule, M., Santhakumari, J.M.B., and Shanware, A., E-J. Chem., 2007, vol. 4, no. 1, p. 53.CrossRefGoogle Scholar
  5. 5.
    Amaral, L., Viveiros, M., and Molnar, J., In Vivo, 2004, vol. 18, no. 1, p. 725.Google Scholar
  6. 6.
    Sarmiento, G.P., Vitale, R.G., Afeltra, J., Moltrasio, G.Y., and Moglioni, A.G., Eur. J. Med. Chem., 2011, vol. 46, no. 1, p. 101.CrossRefGoogle Scholar
  7. 7.
    Ghinet, A., Moise, I.M., Rigo, B., Homerin, G., Farce, A., Dubois, J., and Bîcu, E., Bioorg. Med. Chem., 2016, vol. 24, no. 10, p. 2307.CrossRefGoogle Scholar
  8. 8.
    Mucsi, I., Molnar, J., and Motohashi, N., Int. J. Antimicrob. Agents, 2001, vol. 18, no. 1, p. 67.CrossRefGoogle Scholar
  9. 9.
    Matralis, A.N. and Kourounakis, A.P., J. Med. Chem., 2014, vol. 57, no. 6, p. 2568.CrossRefGoogle Scholar
  10. 10.
    Amaral, L., Kristiansen, J.E., Viveiros, M., and Atouguia, J., J. Antimicrob. Chemother., 2001, vol. 47, no. 1, p. 505.CrossRefGoogle Scholar
  11. 11.
    Rajasekaran, A. and Devi, K.S., Med. Chem. Res., 2013, vol. 22, no. 1, p. 2578.CrossRefGoogle Scholar
  12. 12.
    Isaac, N.E., Walker, A.M., Jick, H., and Gorman, M., Arch. Ophthalmol., 1991, vol. 109, no. 2, p. 256.CrossRefGoogle Scholar
  13. 13.
    Seebeck, T. and Gehr, P., Mol. Biochem. Parasitol., 1983, vol. 9, no. 3, p. 197.CrossRefGoogle Scholar
  14. 14.
    Laws, M.L., Roberts, R.R., Nicholson, J.M., Butcher, R., Stables, J.P., Goodwin, A.M., Smith, C.A., and Scott, K.R., Bioorg. Med. Chem., 1998, vol. 6, no. 12, p. 2289.CrossRefGoogle Scholar
  15. 15.
    Zimecki, M., Artym, J., Kocieba, M., Pluta, K., Morak-Młodawska, B., and Jeleń, M., Cell. Mol. Biol. Lett., 2009, vol. 14, no. 4, p. 622.CrossRefGoogle Scholar
  16. 16.
    Michalak, K., Wesolowska, O., Motohashi, N., Molnar, J., and Hendrich, A.B., Curr. Drug Targets, 2006, vol. 7, no. 9, p. 1095.CrossRefGoogle Scholar
  17. 17.
    Jaszczyszyn, A., Gąsiorowski, K., Świątek, P., Malinka, W., Cieślik-Boczula, C., Petrus, J., and Czarnik-Matusewicz, B., Pharmacol. Rep., 2012, vol. 64, no. 1, p. 16.CrossRefGoogle Scholar
  18. 18.
    Dixit, Y., Dixit, R., Gautam, N., and Gautam, D.C., E-J. Chem., 2008, vol. 5, no. S1, p. 1063.CrossRefGoogle Scholar
  19. 19.
    Rajasekaran, A. and Devi, K.S., Med. Chem. Res., 2013, vol. 22, no. 1, p. 2578.CrossRefGoogle Scholar
  20. 20.
    Saranya, A.V. and Ravi, S., Int. J. Clin. Exp. Pathol., 2013, vol. 3, no. 2, p. 9.Google Scholar
  21. 21.
    Saranya, A.K. and Ravi, S., Res. Chem. Intermed., 2014, vol. 40, no. 1, p. 3085.CrossRefGoogle Scholar
  22. 22.
    Adekola, E.O., Ezema, B.E., Ayogu, J.I., Ugwu, D.I., Ezema, C.G., Nwasi, A.P., and Ike, C.O., Orient. J. Chem., 2014, vol. 30, no. 4, p. 1493.CrossRefGoogle Scholar
  23. 23.
    Sarmiento, G., Vitale, R.G., Afeltra, J., Moltrasio, G.Y., and Moglioni, A.G., Eur. J. Med. Chem., 2011, vol. 46, no. 1, p. 101.CrossRefGoogle Scholar
  24. 24.
    Venkatesan, K., Satyanarayana, V.S.V., Mohanapriya, K., Khora, S.S., and Sivakumar, A., Res. Chem. Intermed., 2015, vol. 41, no. 1, p. 595.CrossRefGoogle Scholar
  25. 25.
    Bansode, T.N., Shelke, J.V., and Dongre, V.G., Eur. J. Med. Chem., 2009, vol. 44, no. 1, p. 5094.CrossRefGoogle Scholar
  26. 26.
    Bansode, T.N., Rangari, R.P., and Shimpi, P.A., Pharm. Chem. J., 2014, vol. 48, no. 1, p. 430.CrossRefGoogle Scholar
  27. 27.
    Swarnkar, P.K., Kriplani, P., Gupta, G.N., and Ojha, K.G., E-J. Chem., 2007, vol. 4, no. 1, p. 14.CrossRefGoogle Scholar
  28. 28.
    Gautam, V., Sharma, M., Samarth, R., Gautam, N., Kumar, A., Sharma, I.K., and Gautam, D.C., An. Univ. Bucuresti, Chim., 2009, vol. 18, no. 2, p. 85.Google Scholar
  29. 29.
    Satyanarayana, B., Muralikrishna, P., Kumar, D.R., and Ramachandran, D., J. Chem. Pharm. Res., 2013, vol. 5, no. 5, p. 262.Google Scholar
  30. 30.
    Arulmurugan, S., Kavitha, H.P., and Venkatraman, B.R., Orbital: Electron. J. Chem., 2010, vol. 2, no. 3, p. 271.Google Scholar
  31. 31.
    Vanangamudi, G., Ranganathan, K., and Thirunarayanan, G., World J. Chem., 2012, vol. 7, no. 1, p. 22.Google Scholar
  32. 32.
    Bisi, A., Meli, M., Gobbi, S., Rampa, A., Tolomeo, M., and Dusonchet, L., Bioorg. Med. Chem., 2008, vol. 16, no. 1, p. 6474.CrossRefGoogle Scholar
  33. 33.
    Morak-Młodawska, B., Pluta, K., Lotocha, M., and Jeleń, M., Med. Chem. Res., 2016, vol. 25, no. 11, p. 2425.CrossRefGoogle Scholar
  34. 34.
    Abuhaie, C.M., Ghinet, A., Ghinet, A., Farce, A., Dubois, J., Gautret, P., Rigo, B., Belei, D., and Bîcu, E., Eur. J. Med. Chem., 2013, vol. 59, no. 1, p. 101.CrossRefGoogle Scholar
  35. 35.
    Morak-Młodawska, B., Pluta, K., Zimecki, M., Jeleń, M., Artym, J., and Kocieba, M., Med. Chem. Res., 2015, vol. 24, no. 1, p. 1408.CrossRefGoogle Scholar
  36. 36.
    Motohashi, N., Kawase, M., Saito, S., Kurihar, T., Satoh, K., Nakshima, H., Premanathan, M., Arakaki, R., Sakagami, H., and Molnar, J., Int. J. Antimicrob. Agents, 2000, vol. 14, no. 1, p. 203.CrossRefGoogle Scholar
  37. 37.
    Siddiqui, A.B., Trivedi, A.R., Kataria, V.B., and Shah, V.H., Bioorg. Med. Chem. Lett., 2014, vol. 24, no. 1, p. 1493.CrossRefGoogle Scholar
  38. 38.
    He, C.X., Meng, H., Zhang, X., Cui, H.Q., and Yin, D.L., Chin. Chem. Lett., 2015, vol. 26, no. 1, p. 951.CrossRefGoogle Scholar
  39. 39.
    Dunn, E.A., Roxburgh, M., Larsen, L., Smith, R.A.J., McLellan, A.D., Heikal, A., Murphy, M.P., and Cook, G.M., Bioorg. Med. Chem., 2014, vol. 22, no. 1, p. 5320.CrossRefGoogle Scholar
  40. 40.
    Batr, A.B., Kalin, J.H., Fooksman, E.M., Amorose, E.L., Price, C.M., Williams, H.M., Rodig, M.J., Mitchell, M.O., Cho, S.H., and Wang, Y., Bioorg. Med. Chem. Lett., 2007, vol. 17, no. 5, p. 1346.Google Scholar
  41. 41.
    Madrid, P.B., Polgar, W.E., Toll, L., and Tanga, M.J., Bioorg. Med. Chem. Lett., 2007, vol. 17, no. 1, p. 3014.CrossRefGoogle Scholar
  42. 42.
    Sharma, R., Samadhiya, P., Srivastava, S.D., and Srivastava, S.K., J. Serb. Chem. Soc., 2012, vol. 77, no. 1, p. 17.CrossRefGoogle Scholar
  43. 43.
    Ritu, S., Pushkal, S., Srivastava, S.D., and Srivastava, S.K., Org. Commun., 2011, vol. 4, no. 2, p. 42.Google Scholar
  44. 44.
    Jeleń, M., Bavavea, E.I., Pappa, M., Kourounakis, A.P., Morak-Młodawska, B., and Pluta, K., Med. Chem. Res., 2015, vol. 24, no. 1, p. 1725.CrossRefGoogle Scholar
  45. 45.
    Narule, M.N., Gaidhane, M.K., and Gaidhane, P.K., Int. J. Curr. Pharm. Res., 2015, vol. 7, no. 1, p. 66.Google Scholar
  46. 46.
    Saranya, A.V., Ravi, S., and Venkatachalapathi, S., Res. J. Chem. Sci., 2013, vol. 3, no. 1, p. 82.Google Scholar
  47. 47.
    Naik, N., Kumar, H.V., and Veena, V., Pharma Chem., 2012, vol. 4, no. 3, p. 786.Google Scholar
  48. 48.
    Maddila, S., Momin, M., Gorle, S., Palakondu, L., and Jonnalagadda, S.B., J. Chil. Chem. Soc., 2015, vol. 60, no. 1, p. 2919.CrossRefGoogle Scholar
  49. 49.
    Sadanandam, Y.S., Shetty, M.M., Rao, A.B., and Rambabu, Y., Eur. J. Med. Chem., 2009, vol. 44, no. 1, p. 197.CrossRefGoogle Scholar
  50. 50.
    Saranya, A.V. and Ravi, S., Res. J. Recent Sci., 2012, vol. 1, no. 12, p. 40.Google Scholar
  51. 51.
    Domínguez, J.N., López, S., Charris, J., Iarruso, L., Lobo, G., Semenov, A., Olson, J.E., and Rosenthal, P.J., J. Med. Chem., 1997, vol. 40, no. 1, p. 2726.CrossRefGoogle Scholar
  52. 52.
    Belei, D., Kumea, C., Samson, A., Farce, A., Dubois, J., Bîcu, E., and Ghinet, A., Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 1, p. 4517.CrossRefGoogle Scholar
  53. 53.
    Meyer, M., Lang, P.T., Gerber, S., Madrid, P.B., Pinto, I.G., Guy, R.K., and James, T.L., Chem. Biol., 2006, vol. 13, no. 1, p. 993.CrossRefGoogle Scholar
  54. 54.
    Bishnoi, A., Pandey, V.K., and Saxena, R., Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2002, vol. 41, no. 1, p. 1978.Google Scholar
  55. 55.
    Purohit, A.K., Balish, M.D., Leichty, J.J., Roe, A., Ward, L.M., Mitchell, M.O., and Hsia, S.C., Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 1, p. 5308.CrossRefGoogle Scholar
  56. 56.
    Silva, G.A., Costa, L.M.M., Brito, F.C.F., Miranda, A.L.P., Barreiro, E.J., and Fraga, A.M., Bioorg. Med. Chem., 2004, vol. 12, no. 1, p. 3149.CrossRefGoogle Scholar
  57. 57.
    Kumar, D., Agarwal, R.C., Bhati, S.K., and Kumar, A., Orient. J. Chem., 2010, vol. 26, no. 2, p. 497.Google Scholar
  58. 58.
    Sharma, S., Srivastava, V.K., and Kumar, A., Pharmazie, 2005, vol. 60, no. 1, p. 18.Google Scholar
  59. 59.
    Rajasekaran, A., Periasamy, M., and Venkatesan, S., J. Dev. Biol. Tissue Eng., 2010, vol. 2, no. 1, p. 5.Google Scholar
  60. 60.
    Odin, E.M., Onoja, P.K., and Saleh, J.F., Int. J. Phys. Sci., 2013, vol. 8, no. 26, p. 1374.Google Scholar
  61. 61.
    Zhi, S., Mu, S., Liu, Y., Gong, M., Wang, P.B., and Liu, D.K., Chin. Chem. Lett., 2015, vol. 26, no. 1, p. 627.CrossRefGoogle Scholar
  62. 62.
    Kalkanidis, M., Klonis, N., Tilley, L., and Deady, L.W., Biochem. Pharmacol., 2002, vol. 63, no. 1, p. 833.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Chandravadivelu Gopi
    • 1
    • 2
  • Magharla Dasaratha Dhanaraju
    • 1
    Email author
  1. 1.GIET School of PharmacyRajahmundry, Andhra PradeshIndia
  2. 2.School of Pharmaceutical Sciences and Technologies, Jawaharlal Nehru Technological UniversityKakinada, Andhra PradeshIndia

Personalised recommendations