Advertisement

Arid Ecosystems

, Volume 9, Issue 3, pp 166–173 | Cite as

Meta-Analysis of the Large Herbivores’ Trophic Spectra in Northern Asia Concerning Changes of Dominant Primary Consumers

  • I. S. Sheremet’evEmail author
  • S. B. Rozenfel’dEmail author
  • T. P. Sipko
SYSTEMATIC STUDY OF ARID TERRITORIES
  • 3 Downloads

Abstract

The paper deals with influence of trophic competition on large herbivore community dynamics in Northern Asia related to landscape changes and extermination by humans. It was evaluated how the competitive asymmetry in trophic resource use corresponds to differences in geographic range or population size and in their trends and/or rates of change, which reflect directions of the dominant primary consumers change in the late Pleistocene and Holocene and at present. It was found that the directions mainly correspond to competitive asymmetry and were driven already during landscape changes after the Last Glacial Maximum, and later the human influence mainly enhanced and continues to enhance the competition influence. Regulating abundance relation of wild and domestic herbivore species humans become an element of the trophic competition regulation.

Keywords:

geographic range global changes competition steppe herbivores tundra 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Ahrestani, F.S. and Sankaran, M., Introduction: The large herbivores of South and Southeast Asia—A prominent but neglected guild, in The Ecology of Large Herbivores in South and Southeast Asia, Dordrecht: Springer-Verlag, 2016, pp. 1–13.CrossRefGoogle Scholar
  2. 2.
    Álvarez-Lao, D., Kahlke, R.-D., García, N., and Mol, D., The Padul mammoth finds—On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2009, vol. 278, pp. 57–70.CrossRefGoogle Scholar
  3. 3.
    Baryshnikov, G.F., Garutt, V.E., Gromov, I.M., Gureev, A.A., Kuz’mina, I.E., Sokolov, A.S., Strelkov, P.P., Godina, A.V., and Zhegallov, V.I., Katlaog mlekopitayushchikh SSSR (pliotsen-sovremennost’) (Catalogue of Mammals of USSR: From Pliocene until Present Time), Leningrad: Nauka, 1981.Google Scholar
  4. 4.
    Chernykh, E.N., Stepnoi poyas Evrazii: Fenomen kochevykh kul’tur (Steppe Belt of Eurasia: The Phenomenon of Nomadic Cultures), Moscow: Rukopisnye Pamyatniki Drevnei Rusi, 2009.Google Scholar
  5. 5.
    Danilkin, A.A., Olen’i (Family Cervidae), Moscow: GEOS, 1999.Google Scholar
  6. 6.
    Danilkin, A.A., Svinye (Family Suidae), Moscow: GEOS, 2002.Google Scholar
  7. 7.
    Danilkin, A.A., Polorogie (Family Bovidae), Moscow: KMK, 2005.Google Scholar
  8. 8.
    Danilkin, A.A., Okhota, okhotnich’e khozyaistvo i bioraznoobrazie (Hunting, Hunting Economy, and Biological Diversity), Moscow: KMK, 2016.Google Scholar
  9. 9.
    Dinesman, L.G. and Savinetskii, A.B., Quantitative registration of bones in cultural layers of ancient human settlements, in Noveishie arkheozoologicheskie issledovaniya v Rossii (New Archeozoological Studies in Russia), Moscow: Yazyki Slavyanskoi Kul’tury, 2003, pp. 34–56.Google Scholar
  10. 10.
    Geel, B., Aptroot, A., Baittinger, C., Birks, H.H., Bull, I.D., Cross, H.B., Evershed, R.P., Gravendeel, B., Kompanje, E.J.O., Kuperus, P., Mol, D., Nierop, K.G.J., Pals, J.P., Tikhonov, A.N., van Reenen, G., and van Tienderen, P.H., The ecological implications of a Yakutian mammoth’s last meal, Quat. Res., 2008, vol. 69, pp. 361–376.CrossRefGoogle Scholar
  11. 11.
    Geptner, V.G., Nasimovich, A.A., and Bannikov, A.G., Mlekopitayushchie Sovetskogo Soyuza (Mammals of Soviet Union), Moscow: Vysshaya Shkola, 1961, vol. 1.Google Scholar
  12. 12.
    Gonzalez, A., Metacommunities: spatial community ecology, 2009. https://www.researchgate.net/publication/ 227577615_Metacommunities_Spatial_Community_ Ecology. Accessed February 12, 2017.Google Scholar
  13. 13.
    Gotelli, N.J. and Entsminger, G.L., EcoSim: Null models software for ecology, Version 7.0, Acquired Intelligence & Kesey-Bear, 2001. http://homepages.together.net/ ~gentsmin/ecosim.htm. Accessed June 1, 2012.Google Scholar
  14. 14.
    Greenberg, R., Ecological plasticity, neophobia, and resource use in birds, Stud. Avian Biol., 1990, vol. 13, pp. 431–437.Google Scholar
  15. 15.
    Ito, T.Y., Lhagvasuren, B., Tsunekawa, A., Shinoda, M., Takatsuki, S., Buuveibaatar, B., and Chimeddorj, B., Fragmentation of the habitat of wild ungulates by anthropogenic barriers in Mongolia, PLoS One, 2013, vol. 8, no. 2, p. e56995.CrossRefPubMedGoogle Scholar
  16. 16.
    Jeffries, M.J. and Lawton, J.H., Enemy free space and the structure of ecological communities, Biol. J. Linn. Soc., 1984, vol. 23, no. 4, pp. 269–286.CrossRefGoogle Scholar
  17. 17.
    Karimova, T.Yu., Lushchekina, A.A., and Rozhnov, V.V., Saigaki v nevole: ot soderzhaniya do vypuska v prirodu (Saigas in Captivity: From Keeping and Breeding until Release into Nature), Moscow: KMK, 2017.Google Scholar
  18. 18.
    Kartzinel, T.R., Chen, P.A., Coverdale, T.C., Erickson, D.L., Kress, W.J., Kuzmina, M.L., Rubenstein, D.I., Wang, W., and Pringle, R.M., DNA metabarcoding illuminates dietary niche partitioning by African large herbivores, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 26, pp. 8019–8024.Google Scholar
  19. 19.
    Kirillova, I.V., Zanina, O.G., Chernova, O.F., Lapteva, E.G., Trofimova, S.S., Lebedev, V.S., Tiuno, A.V., Soares, A.E.R., Shidlovskiy, F.K., and Shapiro, B., An ancient bison from the mouth of the Rauchua River (Chukotka, Russia), Quat. Res., 2015, vol. 84, pp. 232–245.Google Scholar
  20. 20.
    Krasnoborov, I.M., Tundra-steppes of the south of Central Siberia, in Rastitel’nyi pokrov vysokogorii (Vegetation Cover of High Altitudes), Leningrad: Nauka, 1989, pp. 131–136.Google Scholar
  21. 21.
    Krivoshapkin, A.A., Migration of wild reindeers (Rangifer tarandus L.) from Taimyr population to the territory of northwestern Yakutia, Vestn. Sev.-Vost. Fed. Univ., 2016, no. 6, pp. 15–19.Google Scholar
  22. 22.
    Kuz’min, Ya.V., Goekhronologiya i paleosreda pozdnego paleolita i neolita umerennogo poyasa Vostochnoi Azii (Geochronology and Paleoenvironment of Later Paleolith and Neolith of the Middle Zone of Eastern Asia), Vladivostok: Tikhookean. Inst. Geogr., Dal’nevost. Otd., Ross. Akad. Nauk, 2005.Google Scholar
  23. 23.
    Leibold, M.A. and Chase, J.M., Metacommunity Ecology, Princeton: Princeton Univ. Press, 2017.CrossRefGoogle Scholar
  24. 24.
    McCullough, D.R., Jiang, Z-G., and Li, C-W., Sika deer in Mainland China, in Sika Deer, New York: Springer-Verlag, 2009, pp. 521–539.CrossRefGoogle Scholar
  25. 25.
    Monin, A.S. and Shishkov, Yu.A., Istoriya klimata (History of Climate), Leningrad: Gidrometeoizdat, 1979.Google Scholar
  26. 26.
    Nasimovich, A.A., Rol’ rezhima snezhnogo pokrova v zhizni kopytnykh zhivotnykh na territorii SSSR (Role of Snow Cover Regime in Life of Hoofed Animals on the Territory Soviet Union), Moscow: Akad. Nauk SSSR, 1955.Google Scholar
  27. 27.
    Owen, A.B., Karl Pearson’s meta-analysis revisited, Ann. Stat., B, 2009, vol. 37, no. 6, pp. 3867–3892.Google Scholar
  28. 28.
    Pesenko, Yu.A., Printsipy i metody kolichestvennogo analiza v faunisticheksikh issledovaniyakh (Principles and Methods of Quantitative Analysis in Faunistic Studies), Moscow: Nauka, 1982.Google Scholar
  29. 29.
    Pospelova, E.B., Pospelov, I.N., and Orlov, M.V., Climate change in Eastern Taimyr over the last 80 years and the warming impact on biodiversity and ecosystem processes in its territory, Nat. Conserv. Res., 2017, vol. 2, no. 3, pp. 48–60.CrossRefGoogle Scholar
  30. 30.
    Prikhod’ko, V.I., Kabarga (The Siberian Musk Deer), Moscow: GEOS, 2003.Google Scholar
  31. 31.
    Sandom, C., Faurby, S., Sandel, B., and Svenning, J.-C., Global late Quaternary megafauna extinctions linked to humans, not climate change, Proc. R. Soc. London, Ser. B, 2014, vol. 281, no. 1787. p. 20133254. Accessed February 12, 2017. https://doi.org/10.1098/rspb.2013.3254
  32. 32.
    Sheremetev, I.S. and Panasenko, V.E., Change of ranges of hoofed animals in the south of Far East (Pleistocene–present time), Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, 2013, no. 2, pp. 41–46.Google Scholar
  33. 33.
    Sheremetev, I.S. and Prokopenko, S.V., Ekologiya pitaniya parnokopytnykh yuga Dal’nego Vostoka (Ecology of Feeding of Artiodactyla Animals of the South of Far East), Vladivostok: Dal’nauka, 2005.Google Scholar
  34. 34.
    Sheremetev, I.S. and Rozenfeld, S.B., Landscape changes during the Pleistocene–Holocene transition and range dynamics of large herbivorous mammals of Northern Asia, Arid Ecosyst., 2018, vol. 8, no. 4, pp. 245–253.CrossRefGoogle Scholar
  35. 35.
    Sheremet’ev, I.S., Zhuravlev, Yu.N., Korytin, N.S., and Bol’shakov, V.N., The structure of ungulate communities, Russ. J. Ecol., 2011, vol. 42, no. 6, pp. 480–484.CrossRefGoogle Scholar
  36. 36.
    Sheremetev, I.S., Rozenfeld, S.B., Dmitriev, I.A., Jargalsaikhan, L., and Enkh-Amgalan, S., Food resource partitioning among large herbivores of eastern Mongolia in summer, Contemp. Probl. Ecol., 2014a, vol. 7, no. 5, pp. 579–586.CrossRefGoogle Scholar
  37. 37.
    Sheremetev, I.S., Rozenfeld, S.B., Sipko, T.P., and Gruzdev, A.R., Extinction of large herbivore mammals: Niche characteristics of the musk ox Ovibos moschatus and the reindeer Rangifer tarandus coexisting in isolation, Biol. Bull. Rev., 2014b, vol. 4, no. 5, pp. 433–442.CrossRefGoogle Scholar
  38. 38.
    Sheremetev, I.S., Petrunenko, E.A., Kislov, D.E., Rozenfeld, S.B., Dmitriev, I.A., Jargalsaikhan, L., and Enkh-Amgalan, S., Food selectivity of large herbivores in Eastern Mongolia, Contemp. Probl. Ecol., 2017, vol. 10, no. 1, pp. 17–27.CrossRefGoogle Scholar
  39. 39.
    StatSoft, STATISTICA software, Version 10, 2011. http://www.statsoft.com. Accessed October 12, 2012.Google Scholar
  40. 40.
    Stuart, A.J., Late Quaternary megafaunal extinctions on the continents: a short review, Geol. J., 2015, vol. 50, pp. 338–363.CrossRefGoogle Scholar
  41. 41.
    Tikhonov, A.N., Mamont (Mammoth), Moscow: KMK, 2005.Google Scholar
  42. 42.
    Ukraintseva, V.V., Rastitel’nost’ i klimat Sibiri epokhi mamonta (Vegetation and Climate of Siberia in the Mammoth Epoch), Krasnoyarsk: Minist. Prir. Resur. Ross. Fed., 2002.Google Scholar
  43. 43.
    Vereshchagin, N.K. and Baryshnikov, G.F., The ecological structure of the “mammoth fauna” in Eurasia, Ann. Zool. Fen., 1992, vol. 28, pp. 253–259.Google Scholar
  44. 44.
    Zherikhin, V.V., Izbrannye trudy po paleoekologii i filotsenogenetike (Selected Research Works on Paleoecology and Phylogenetics), Moscow: KMK, 2003, pp. 449–459.Google Scholar
  45. 45.
    Zimov, S.A., Zimov, N.S., Tikhonov, A.N., and Chapin, F.S., III, Mammoth steppe: a high-productivity phenomenon, Quat. Sci. Rev., 2012, vol. 57, pp. 26–45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Severtsov Institute of Ecology and EvolutionMoscowRussia

Personalised recommendations