Arid Ecosystems

, Volume 9, Issue 3, pp 150–156 | Cite as

Landscape-Ecological Assessment of Dry Lands of the Russian-Kazakhstan Border Zone for Sustainable Land Use

  • B. A. KrasnoyarovaEmail author
  • I. V. Orlova
  • T. G. Plutalova
  • S. N. Sharabarina


An algorithm for the landscape-ecological assessment of drylands is developed and implemented based on the integration of geosystem, ecological-landscape, and agro-ecological scientific approaches, as well as landscape planning tools. The algorithm includes an analysis of the landscape structure of the territory and land-use dynamics; assessment of the potential natural resistance of landscapes to agricultural impact and their agricultural production quality; functional zoning; and the development of optimization measures for land use. The results of the study showed that 92% of the territory of the Russian-Kazakhstan border zone is represented by landscapes with poor or no resistance to agricultural impact. Landscapes with low values of agricultural production quality constitute 73% of agricultural land. Landscapes of good and medium agricultural production quality make up 19% and are located on flat interfluves. Recommendations for sustainable land use in the zone of dry steppes are proposed based on the identified landscape differentiation.


dry-steppe landscapes agricultural impact ecologically acceptable land use functional zoning 



Conflict of interest. The authors declare that they have no conflict of interest. Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Atlas Altaiskogo kraya (Atlas of Altai Krai), Moscow: Glav. Upr. Geodez. Kartogr. Sov. Minist. SSSR, 1978, vol. 1.Google Scholar
  2. 2.
    Bunin, A.A., Zyryanov, A.A., and Myagkii, P.A., Zonal and intrazonal features of the development of erosion and deflation in the Altai krai, Vestn. Altaisk. Gos. Agrar. Univ., 2017, no. 2, pp. 29–37.Google Scholar
  3. 3.
    Chibilev, A.A., Stepnaya Evraziya: regional’nyi obzor prirodnogo raznoobraziya (Steppe Eurasia: Regional Review of Nature Diversity), Orenburg: Inst. Stepi, Ross. Akad. Nauk, 2017, 2nd ed.Google Scholar
  4. 4.
    De Luca, A.I., Molari, G., and Seddaiu, G., Multidisciplinary and innovative methodologies for sustainable management in agricultural systems, Environ. Eng. Manage. J., 2015, vol. 14, no. 7, pp. 1571–1581.CrossRefGoogle Scholar
  5. 5.
    Forman, R.T.T., Land Mosaics: The Ecology of Landscapes and Regions, Cambridge: Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
  6. 6.
    Hayati, D., Ranjbar, Z., and Karami, E., Measuring agricultural sustainability, in Biodiversity, Biofuels, Agroforestry and Conservation Agriculture, Sustainable Agriculture Reviews Series vol. 5, New York: Springer-Verlag, 2010, vol. 5, pp. 73–100.Google Scholar
  7. 7.
    Kazakh steppe, 2018. pages/5. Accessed October 4, 2018.Google Scholar
  8. 8.
    Kochurov, B.I., Evaluation of soil resistance to pollution, Geogr. Prir. Resur., 1983, no. 4, pp. 55–60.Google Scholar
  9. 9.
    Lambin, E.F., Turner, B.L., and Geist, H.J., The causes of land-use and land-cover change: moving beyond the myths, Global Environ. Change, 2001, vol. 11, no. 4, pp. 261–269.CrossRefGoogle Scholar
  10. 10.
    Landshaftnaya karta Altaiskogo kraya, Masshtab 1 : 500 000 (Landscape Map of Altai Krai, Scale 1 : 500 000), Barnaul: Inst. Vodno-Ekol. Probl., Sib. Otd., Ross. Akad. Nauk, 2016.Google Scholar
  11. 11.
    Landshaftnaya karta SSSR, Masshtab 1 : 2 500 000 (Landscape Map of USSR, Scale 1 : 2 500 000), Moscow: Minist. Geol. SSSR, 1980.Google Scholar
  12. 12.
    Legenda k landshaftnoi karte SSSR, Masshtab 1 : 2 500 000 (Legend to Landscape Map of USSR), Moscow, 1987.Google Scholar
  13. 13.
    Levykin, S.V., Chibilev, A.A., Kazachkov, G.V., Yakovlev, I.G., and Grudinin, D.A., Recovery of zonal steppe ecosystems on post-virgin space of Russia and Kazakhstan, Stepnoi Byull., 2013, no. 37, pp. 5–8.Google Scholar
  14. 14.
    National Report on the State of the Environment and the Use of Natural Resources in 2016, State Found of Ecological Information, 2017. Accessed March 15, 2018.Google Scholar
  15. 15.
    Opustynivanie zasushlivykh zemel’ Rossii: novye sapekty ananliza, pervye rezul’taty, problemy (Desertification of Dry Lands of Russia: New Aspects of Analysis, First Results, and Problems), Drozdov, A.V., Zolotokrylin, A.N., Mandych, A.F., , Eds., Moscow: KMK, 2009.Google Scholar
  16. 16.
    Orlova, I.V., Possible introduction of landscape planning into Russian schemes of territorial planning of municipal districts, Geogr. Prir. Resur., 2014a, no. 2, pp. 167–173.Google Scholar
  17. 17.
    Orlova, I.V., Landshaftno-agroekologicheskoe planirovanie territorii munitsipal’nogo raiona (Landscape Agroecological Planning of the Territory of Municipal District), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2014b.Google Scholar
  18. 18.
    Pochvennaya karta Altaiskogo kraya i Respubliki Altai, Masshtab 1 : 500 000 (Soil Map of Altai Krai and Altai Republic, Scale 1 : 500 000), Moscow: Ross. Nauchno-Issled. Proektno-Izyskat. Ob”ed. Ispol’z. Zemel’nykh Resur., 1986.Google Scholar
  19. 19.
    Rossiisko-Kazakhstanskii transgranichnyi region: istoriya, geoekologiya i ustoichivoe razvitie (Russian-Kazakh Cross-Boundary Region: History, Geoecology, and Sustainable Development), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2011.Google Scholar
  20. 20.
    Snakin, V.V., Krechetov, P.P., Mel’chenko, V.E., and Alyabina, I.O., Evaluation of soils and landscapes for ecological standardization, in Biogeokhimicheskie osnovy ekologicheskogo normirovaniya (Biogeochemical Basis of Ecological Standardization), Moscow: Nauka, 1993, pp. 126–142.Google Scholar
  21. 21.
    Spivak, L.F., Batyrbaeva, M.Zh., Vitkovskaya, I.S., Muratova, N.R., and Islamgulova, A.F., Spatio-temporal changes of steppe vegetation of Kazakhstan according to satellite survey data, Ekosist.: Ekol. Din., 2017, vol. 1, no. 3, pp. 116–145.Google Scholar
  22. 22.
    Steiner, F., The Living Landscape: An Ecological Approach to Landscape Planning, New York: McGraw-Hill, 2000, 2nd ed.Google Scholar
  23. 23.
    Steinitz, C., A framework for planning practice and education, Process Arch., 1995, no. 127, pp. 42–54.Google Scholar
  24. 24.
    The data on agricultural land fertility, Kulundinskaya State Agrochemical Station, 2018. component/k2/itemlist. Accessed March 27, 2018.Google Scholar
  25. 25.
    The United Nations Convention to Combat Desertification in those countries experiencing serious drought and/or desertification, particularly in Africa, 1994. Accessed April 9, 2018.Google Scholar
  26. 26.
    Turner, T., Landscape Planning and Environmental Impact Design, London: UCL Press, 1998.Google Scholar
  27. 27.
    U.S. Geological Survey, USGS Global Visualization Viewer. 2017. Accessed November 12, 2018.Google Scholar
  28. 28.
    Zolotokrylin, A.N. and Cherenkova, E.A., Area of dry lands of the Russian plains, Arid. Ekosist., 2009, vol. 15, no. 1 (37), pp. 5–12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. A. Krasnoyarova
    • 1
    • 2
    Email author
  • I. V. Orlova
    • 1
  • T. G. Plutalova
    • 1
  • S. N. Sharabarina
    • 1
  1. 1.Institute for Water and Environmental Problems, Siberian Branch, Russian Academy of SciencesBarnaulRussia
  2. 2.Altai State UniversityBarnaulRussia

Personalised recommendations