Arid Ecosystems

, Volume 8, Issue 4, pp 299–306 | Cite as

Anthropogenic Transformation of Kyzyl-Yar Lake in Crimea: Multiyear Research Findings

  • N. V. Shadrin
  • V. G. Simonov
  • E. V. AnufriievaEmail author
  • V. N. Popovichev
  • N. O. Sirotina


Most of the hypersaline lakes located in the arid part of the Crimea have been undergoing anthropogenic transformations. We concentrate on the impact of the established water storage reservoir on the marine Kyzyl-Yar Lake (Western Crimea) over the period from 1985 to 2017. As a result of water seepage from the reservoir, the lake salinity decreased from 162 g/L in 1985 to 2–3 g/L in 2005 and subsequently remained steady at this level. Over 20 years, the lake changed from a hypersaline to freshwater lake. The accompanying changes included an altered ratio of ion concentrations in the water column and interstitial waters and increased Ca2+/Na+ and \({{{\text{SO}}_{4}^{{2 - }}} \mathord{\left/ {\vphantom {{{\text{SO}}_{4}^{{2 - }}} {{\text{C}}{{{\text{l}}}^{ - }}}}} \right. \kern-0em} {{\text{C}}{{{\text{l}}}^{ - }}}}\) indicators. Substantial shifts occurred in the structure of the biological diversity and conditions of the bottom deposits, such as the disappearance of branchipoda crustaceans of the genus Artemia, which had been practically the only representative of the local fauna before, and the dominance of new species Cladocera and Cyclopoida in plankton.


Crimean Peninsula anthropogenic transformation long-term changes lake ecosystems 



This work was supported in part by the Russian Foundation for Basic Research, project no. 16-05-00134 a.

We are grateful to the staff of the Crimean Hydrogeological Regime–Operation Station and Kovalevsky Institute of Marine Biological Research of the Russian Academy of Sciences for their participation in the field work and the analysis of samples throughout many years of research.


Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies with animals performed by any of the authors.


  1. 1.
    Anufriieva, E., Holynska, M., and Shadrin, N., Current invasions of Asian cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna, Ann. Zool., 2014, vol. 64, no. 1, pp. 109–130.CrossRefGoogle Scholar
  2. 2.
    Bakhman, V.I., Ovsyannikova, K.A., and Vadkovskaya, A.D., Metodika analiza lechebnykh gryazei (peloidov) (Analysis of Medical Muds (Peloids)), Moscow: Tsentr. Nauchno-Issled. Proektn.-Konstr. Inst. Morsk. Flota, 1965.Google Scholar
  3. 3.
    Bondarenko, L.V. and Yakovenko, V.A., Transformation of the species structure of the crustaceans of Lake Moinaki related to its desalination, Visn. Dnipropetrovsk. Univ., Ser. Biol., Ekol., 2000, vol. 8, no. 2, pp. 100–105.Google Scholar
  4. 4.
    Carpenter, S.R., Regime Shifts in Lake Ecosystems: Pattern and Variation, Oldendorf: Int. Ecol. Inst., 2003.Google Scholar
  5. 5.
    Carrasco, N.K. and Perissinotto, R., Development of a halotolerant community in the St. Lucia Estuary (South Africa) during a hypersaline phase, PloS One, 2012, vol. 7, no. 1, pp. 1–14. Scholar
  6. 6.
    Delju, A.H., Ceylan, A., Piguet, E., and Rebetez, M., Observed climate variability and change in Urmia Lake Basin, Iran, Theor. Appl. Climatol., 2013, vol. 111, nos. 1–2, pp. 285–296.CrossRefGoogle Scholar
  7. 7.
    El-Shabrawy, G.M., Anufriieva, E.V., Germoush, M.O., Goher, M.E., and Shadrin, N.V., Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)? Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1368–1377.CrossRefGoogle Scholar
  8. 8.
    Gheorghievici, L., Gheorghievici, G., and Tanase, I., The phytoplankton composition features of five Romanian pelogenous ecosystems, Environ. Eng. Manage. J., 2015, vol. 14, no. 5, pp. 975–984.CrossRefGoogle Scholar
  9. 9.
    Hart, B.T., Lake, P.S., Webb, J.A., and Grace, M.R., Ecological risk to aquatic systems from salinity increases, Aust. J. Bot., 2003, vol. 51, no. 6, pp. 689–702.CrossRefGoogle Scholar
  10. 10.
    Ivanova, M.B., Quantitative estimation of zooplankton contribution to the processes of mud formation in hypersaline lakes in the Crimea, Russ. J. Aquat. Ecol., 1994, vol. 3, pp. 63–74.Google Scholar
  11. 11.
    Ivanova, M.B., Balushkina, E.V., and Basova, S.L., Structural functional reorganization of ecosystem of hyperhaline Lake Saki (Crimea) at increased salinity, Russ. J. Aquat. Ecol., 1994, vol. 3, no. 2, pp. 111–126.Google Scholar
  12. 12.
    Johnson, L.B. and Host, G.E., Recent developments in landscape approaches for the study of aquatic ecosystems, J. North Am. Benthol. Soc., 2010, vol. 29, no. 1, pp. 41–66.CrossRefGoogle Scholar
  13. 13.
    Kurnakov, N.S., Kuznetsov, V.G., Dzens-Litovskii, A.I., and Ravich, M.I., Solyanye ozera Kryma (Salt Lakes of Crimea), Moscow: Akad. Nauk SSSR, 1936.Google Scholar
  14. 14.
    Lur’e, Yu.Yu., Unifitsirovannye metody analiza vod (Unified Analysis of Water), Moscow: Khimiya, 1973.Google Scholar
  15. 15.
    Martin, S.L. and Soranno, P.A., Lake landscape position: relationships to hydrologic connectivity and landscape features, Limnol. Oceanogr., 2006, vol. 51, no. 2, pp. 801–814.CrossRefGoogle Scholar
  16. 16.
    Moiseenko, T.I. and Gashkina, N.A., Formirovanie khimicheskogo sostava vod ozer v uloviyakh izmeneniya okruzhayushchei sredy (Chemical Composition of Lake Waters under Environmental Changes), Moscow: Nauka, 2010.Google Scholar
  17. 17.
    Müller, P.H., Neuman, P., and Storm, R., Tafeln der Mathematischen Statistik, Leipzig: VEB Fachbuchverlag, 1979.Google Scholar
  18. 18.
    Namsaraev, B.B., Zaitseva, S.V., Khakhinov, V.V., Imetkhenov, A.B., Rinchino, S.Kh., and Maksanova, L.B., Zh., Mineral’nye istochniki i ozera Barguzinskoi doliny (Mineral Sources and Lakes of Barguzin Valley), Ulan-Ude: Buryat. Gos. Univ., 2007.Google Scholar
  19. 19.
    Plotnikov, I.S., Mnogoletnie izmeneniya fauny svobodozhivushchikh vodnykh bespozvonochnykh Aral’skogo morya (Long-Term changes of Fauna of Free-Living Aquatic Invertebrates of the Aral Sea), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 2016.Google Scholar
  20. 20.
    Ponizovskii, A.M., Solyanye resursy Kryma (Salt Resources of Crimea), Simferopol: Krym, 1965.Google Scholar
  21. 21.
    Shadrin, N.V., Hypersaline lakes as polyextreme habitats for life, in Introduction to Salt Lake Sciences, Beijing: Science Press, 2017, pp. 173–178.Google Scholar
  22. 22.
    Shadrin, N.V. and Anufriieva, E.V., Climate change impact on the marine lakes and their crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine), Turk. J. Fish. Aquat. Sci., 2013, vol. 13, pp. 603–611.CrossRefGoogle Scholar
  23. 23.
    Shadrin, N.V., Kopeika, A., and Batogova, E., The structure and dynamics of zooplankton in hypersaline Tobechikskoe Lake in 2007–2009 (Crimea, Kerch Peninsula), Materialy V mezhdunarodnoi konferentsii “Sovremennye problemy ekologii Azovsko-Chernomorskogo raiona” (Proc. V Int. Conf. “Modern Ecological Problems of Azov-Black Sea Region”), Kerch: Yuzhn. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2010, pp. 50–56.Google Scholar
  24. 24.
    Shadrin, N.V., Anufriieva, E.V., and Galagovets, E.A., Artemia distribution in Ukraine and general remarks on its historical biogeography, Int. J. Artemia Biol., 2012, vol. 2, no. 2, pp. 30–42.Google Scholar
  25. 25.
    Shadrin, N.V., Sergeeva, N.G., Latushkin, A.A., Kolesnikova, E.A., Kipriyanova, L.M., Anufriieva, E.V., and Chepyzhenko, A.A., Transformation of Gulf Sivash (the Sea of Azov) in conditions of growing salinity: changes of meiobenthos and other ecosystem components (2013–2015), Zh. Sib. Fed. Univ., Ser. Biol., 2016, vol. 9, no. 4, pp. 452–466.CrossRefGoogle Scholar
  26. 26.
    Shimoda, Y., Azim, M.E., Perhar, G., Ramin, M., Kenney, M.A., Sadraddini, S., Gudimov, A., George, B., and Arhonditsis, G.B., Our current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate deep lakes? J. Great Lakes Res., 2011, vol. 37, no. 1, pp. 173–193.CrossRefGoogle Scholar
  27. 27.
    Sorokin, Yu.I., Implementation of radiocarbon analysis for measurement of primary production, Okeanologiya (Moscow), 1987, vol. 27, no. 4, pp. 678–682.Google Scholar
  28. 28.
    US Geological Survey, 2017. Accessed August 9, 2017.Google Scholar
  29. 29.
    Verschuren, D., Johnson, T.C., Kling, H.J., Edgington, D.N., Leavitt, P.R., Erik, T., Brown, E.T., Talbot, M.R., Robert, E., and Hecky, R.E., History and timing of human impact on Lake Victoria, East Africa, Proc. R. Soc. London, Ser. B, 2002, vol. 269, no. 1488, pp. 289–294.CrossRefGoogle Scholar
  30. 30.
    Williams, W.D., Anthropogenic salinisation of inland waters, Hydrobiologia, 2001, vol. 466, no. 1, pp. 329–337.CrossRefGoogle Scholar
  31. 31.
    Wurtsbaugh, W.A. and Berry, T.S., Cascading effects of decreased salinity on the plankton chemistry, and physics of the Great Salt Lake (Utah), Can. J. Fish. Aquat. Sci., 1990, vol. 47, no. 1, pp. 100–109.CrossRefGoogle Scholar
  32. 32.
    Zotov, A.B., Characteristics of the specific surface of taxonomic divisions of the phytoplankton of the Odessa region (Ukraine), Al’gologiya, 2005, vol. 15, no. 2, pp. 195–204.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Shadrin
    • 1
  • V. G. Simonov
    • 2
  • E. V. Anufriieva
    • 1
    Email author
  • V. N. Popovichev
    • 1
  • N. O. Sirotina
    • 2
  1. 1.Kovalevsky Institute of Marine Biological Research, Russian Academy of SciencesSevastopolRussia
  2. 2.Hydrogeological Regime and Operation StationSakiRussia

Personalised recommendations