Advertisement

Biology Bulletin Reviews

, Volume 8, Issue 6, pp 518–526 | Cite as

In vitro Callus as a Model System for the Study of Plant Stress-Resistance to Abiotic Factors (on the Example of Cereals)

  • N. N. Kruglova
  • O. A. Seldimirova
  • A. E. Zinatullina
Article
  • 16 Downloads

Abstract

The data on various aspects of the use of cereals callus cultures in vitro as model systems for the study of the plant stress-resistance to abiotic factors are presented. The focus is on studies of in vitro calli for the assessment of plant stress-resistance to drought stress. The advantages and limitations of callus cultures in vitro are considered as experimental methods to obtain stress-resistant regenerants. The issue of studying anti-stress effects in callus cultures in vitro is analyzed. The prospects of studying the mechanisms of the action of abiotic stressors and their resistance in plants at the cellular and tissue levels in the model conditions of in vitro callus culture are shown. It is emphasized that the basis for the use of calli as model systems is both the important role of the cell in all of the morphogenetic events of the plant organism in vivo and in vitro and the similarity of responses of plants in vivo, calli in vitro, and calli regenerants in vitro and ex vitro.

Keywords:

stress adaptation resistance in vitro calli culture cereals 

Notes

REFERENCES

  1. 1.
    Abbas, M.F., Jasim, A.M., and Al-Zubaidy, B.H., Effect of NaCl stress on protein pattern changes in embryogenic callus of the date palm (Phoenix dactylifera L.) cv. Ashkar, AAB Bioflux, 2015, vol. 7, no. 1, pp. 7–11.Google Scholar
  2. 2.
    Abd El-Samad, H.M., Mostafa, D., and Abd El-Hakeem, K.N., The combined action strategy of two stresses, salinity and Cu++ on growth, metabolites and protein pattern of wheat plant, Am. J. Plant Sci., 2017, vol. 8, pp. 625–643.CrossRefGoogle Scholar
  3. 3.
    Ahmad, M.S.A., Javed, F., and Ashraf, M., Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes, Plant Growth Regul., 2007, vol. 53, pp. 53–63.CrossRefGoogle Scholar
  4. 4.
    Al-Khayri, J.M. and Al-Bahrany, A.M., Callus growth and proline accumulation in response to sorbitol and sucrose-induced osmotic stress in rice, Biol. Plant., 2002, vol. 45, no. 4, pp. 609–611.CrossRefGoogle Scholar
  5. 5.
    Al’-Kholani, Kh.A.M., Toaima, V.I.M., and Dolgikh, Yu.I., Production of maize plants with higher resistance to drought by cell selection on medium with mannitol, Biotekhnologiya, 2010, no. 1, pp. 60–67.Google Scholar
  6. 6.
    Alhasnawi, A.N., Zain, Ch.R., Kadhimi, A.A., et al., Accumulation of antioxidants in rice callus (Oryza sativa L.) induced by β-glucan and salt stress, Austral. J. Crop Sci., 2017, vol. 11, no. 1, pp. 118–125.CrossRefGoogle Scholar
  7. 7.
    Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F., Epigenetic variability in plants: heritability, adaptability, evolutionary significance, Russ. J. Plant Physiol., 2016, vol. 63, no. 2, pp. 181–192.CrossRefGoogle Scholar
  8. 8.
    Avalbaev, A.M., Yuldashev, R.A, Fatkhutdinova, R.A., Urusov, F.A., Safutdinova, Yu.V., and Shakirova, F.M., The influence of 24-epibrassidinolide on the hormonal status of wheat plants under sodium chloride, Appl. Biochem. Microbiol., 2010, vol. 46, no. 2, pp. 99–102.CrossRefGoogle Scholar
  9. 9.
    Aydιn, Y., Talas-Ogras, T., Altιnkut, A., et al., Cytohistological studies during cotton somatic embryogenesis with brassinosteroid application, IUFS J. Biol., 2010, vol. 69, no. 1, pp. 33–39.Google Scholar
  10. 10.
    Baby, J. and Jini, D., Proteomic analysis of salinity stress responsive proteins in plants, Asian J. Plant Sci., 2010, vol. 9, pp. 307–313.CrossRefGoogle Scholar
  11. 11.
    Bairu, M.W. and Kane, M.E., Physiological and developmental problems encountered by in vitro cultured plants, Plant Growth Regul., 2011, vol. 63, pp. 101–103.CrossRefGoogle Scholar
  12. 12.
    Baranova, E.N., Chaban, I.A., Kononenko, N.V., et al., Morphofunctional characteristic of barley calluses tolerant to the toxic effect of aluminum, Biol. Membr., 2015, vol. 32, no. 3, pp. 1–13.CrossRefGoogle Scholar
  13. 13.
    Barlow, P.W., The cell division cycle in relation to root organogenesis, Proc. Meeting “Molecular and Cell Biology of the Plant Cell Cycle,” April 9–10, 1992, Ormrod, J.C. and Francis, D., Eds., New York: Springer-Verlag, 1992.Google Scholar
  14. 14.
    Batygina, T.B., Integrity and reliability system in ontogenesis and evolution, Int. J. Plant Reprod. Biol., 2012, vol. 4, no. 2, pp. 107–120.Google Scholar
  15. 15.
    Batygina, T.B., Biologiya razvitiya rastenii. Simfoniya zhizni (Biology of Plant Development: The Symphony of Life), St. Petersburg: DEAN, 2014.Google Scholar
  16. 16.
    Batygina, T.B. and Osadchii, Ya.V., Homology of cellular elements of reproductive and ontogenic structures, Usp. Sovrem. Biol., 2015, vol. 135, no. 4, pp. 337–345.Google Scholar
  17. 17.
    Batygina, T.B. and Rudskii, I.V., Role of stem cells in plant morphogenesis, Dokl. Biol. Sci., 2006, vol. 410, no. 1, pp. 400–402.CrossRefGoogle Scholar
  18. 18.
    Batygina, T.B., Kruglova, N.N., Gorbunova, V.Yu., Titova, G.E., and Seldimirova, O.A., Ot mikrospory—k sortu (From Microspore to Variety), Moscow: Nauka, 2010.Google Scholar
  19. 19.
    Belmonte, M., Elhiti, M., Waldner, B., et al., Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos, J. Exp. Bot., 2010, vol. 61, no. 10, pp. 2779–2794.CrossRefGoogle Scholar
  20. 20.
    Belmonte, M., Elhiti, M., Ashihara, H., et al., Brassinolide-improved development of Brassica napus microspore-derived embryos is associated with increased activities of purine and pyrimidine salvage pathways, Planta, 2011, vol. 233, pp. 95–107.CrossRefGoogle Scholar
  21. 21.
    Benderradji, L., Brini, F., Kellou, K., et al., Callus induction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions, ISRN Agron., 2012, vol. 2012, art. ID 367851. doi 10.5402/2012/367851Google Scholar
  22. 22.
    Bidabadi, S.Sh., Meon, S., Wahab, Z., et al., In vitro selection and characterization of water stress tolerant lines among ethylmethanesulphonate (EMS) induced variants of banana (Musa spp., with AAA genome), Austral. J. Crop Sci., 2012, vol. 6, no. 3, pp. 567–575.Google Scholar
  23. 23.
    Bouiamrine, E.H. and Diouri, M., Response of durum wheat (Triticum durum Desf.) callus culture to osmosis induced drought stress caused by polyethylene glycol (PEG), Ann. Biol. Res., 2012, vol. 3, no. 9, pp. 4555–4563.Google Scholar
  24. 24.
    Butenko, R.G., Cellular and molecular aspects of plant morphogenesis in vitro, I Chailakhyanovskie chteniya (The I Chailakhyan Lectures), Pushchino: Pushch. Nauch. Tsentr, 1994, pp. 7–26.Google Scholar
  25. 25.
    Butenko, R.G., Biologiya kletok vysshikh rastenii in vitro i biotekhnologii na ikh osnove (Biology of the Higher Plant Cells and Their Cultivation in vitro), Moscow: FBK-PRESS, 1999.Google Scholar
  26. 26.
    Cheon, J., Park, S.-Y., Schulz, B., et al., Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction, BMC Plant Biol., 2010, vol. 10, p. 270. doi 10.1186/1471-2229-10-270CrossRefGoogle Scholar
  27. 27.
    Davies, W.J., Kudoyarova, G., and Hartung, W., Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought, J. Plant Growth Regul., 2005, vol. 24, pp. 285–295.CrossRefGoogle Scholar
  28. 28.
    Dias, T.F., Cell selection of spring hard and soft wheat for salt resistance, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Timiryazev Russ. State Agrar. Univ., 1994.Google Scholar
  29. 29.
    Dolgikh, Yu.I., Somaclonal variability of maize plants and its practical use, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Timiryazev Inst. Plant Physiol., Russ. Acad. Sci., 2005.Google Scholar
  30. 30.
    Dridze, I.L., The use of proline analog for the selection of stress-resistant variants in soybean and tobacco tissue culture, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: All-Russ. Sci.-Res. Inst. Agric. Biol., 1990.Google Scholar
  31. 31.
    Dubrovna, O.V. and Bavol, A.V., Variability of the wheat genome during in vitro culture, Cytol. Genet., 2011, vol. 45, no. 5, pp. 333–340.CrossRefGoogle Scholar
  32. 32.
    Dubrovnaya, O.V. and Tishchenko, E.N., Genome variability of homogenic and heterogenic callus of fodder beets, Tsitol. Genet., 2003, vol. 37, no. 6, pp. 23–30.Google Scholar
  33. 33.
    Dudareva, L.V., Shmakov, V.N., Sobenin, A.M., et al., Low-intensity laser radiation changes amino acid composition of wheat callus tissues, Dokl. Biochem. Biophys., 2012, vol. 446, no. 1, pp. 260–262.CrossRefGoogle Scholar
  34. 34.
    Efimova, M.V., Savchuk, A.L., Hasan J.A.K., et al., Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids, Russ. J. Plant Physiol., 2014, vol. 61, no. 6, pp. 733–743.CrossRefGoogle Scholar
  35. 35.
    Fazeli-nasab, B., Masour, O., and Mehdi, A., Estimate of callus induction and volume immature and mature embryo culture and response to in vitro salt resistance in presence of NaCl and ABA in salt tolerant wheat cultivars, Int. Agric. Crop Sci., 2012, vol. 4, no. 1, pp. 8–16.Google Scholar
  36. 36.
    Fornazier, R.F., Ferreira, R.R., Pereira, G.J. G., et al., Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes, Plant Cell, Tissue Organ Cult., 2002, vol. 71, pp. 125–131.CrossRefGoogle Scholar
  37. 37.
    Gladkov, E.A., Cell selection of the creeping bentgrass plants with complex tolerance to heavy metals and salinization, S-kh. Biol., 2009, no. 6, pp. 85–88.Google Scholar
  38. 38.
    Ghoghoberidze, M., Zaalishvili, G., Ramishvili, M., et al., Ultrastructural study of the effect of TNT on callus cells and cells of intact plants of Yucca gloriosa L., Cytol. Genet., 2009, vol. 43, no. 1, pp. 18–21.CrossRefGoogle Scholar
  39. 39.
    Gubanova, N.Ya., Dubrovnaya, O.V., and Chugunkova, T.V., Selection and comparative analysis of salt-resistant callus cultures of fodder beet obtained from explants with different ploidy, Fiziol. Biokhim. Kul’t. Rast., 2000, vol. 32, no. 5, pp. 362–368.Google Scholar
  40. 40.
    Guo, R., Shi, L.X., Yan, Ch., et al., Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings, BMC Plant Biol., 2017, vol. 17. doi 10.1186/s12870-017-0994-6Google Scholar
  41. 41.
    Guo, Y.M., Samans, B., Chen, Sh., et al., Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought stress, Plant Mol. Biol. Rep., 2017, vol. 35, pp. 416–430.CrossRefGoogle Scholar
  42. 42.
    Ignatova, S.A., Kletochnye tekhnologii v rastenievodstve, genetike i selektsii vozdelyvaemykh rastenii: zadachi, vozmozhnosti, razrabotki sistem in vitro (Cell Technologies in Plant Cultivation, Genetics, and Selection of Crop Plants: Objectives, Opportunities, and Cultivation in vitro), Odessa: Astroprint, 2011.Google Scholar
  43. 43.
    Ikeuchi, M., Sugimoto, K., and Iwase, A., Plant callus: mechanisms of induction and repression, Plant Cell, 2013, vol. 25, pp. 3159–3173.CrossRefGoogle Scholar
  44. 44.
    Ikeuchi, M., Iwase, A., and Sugimoto, K., Control of plant cell differentiation by histone modification and DNA methylation, Curr. Opin. Plant Biol., 2015, vol. 28, pp. 60–67.CrossRefGoogle Scholar
  45. 45.
    Inzhevatkin, E.V. and Savchenko, A.A., The nonspecific metabolic reaction of cells to extreme exposures, Biol. Bull., 2016, vol. 43, no. 1, pp. 2–11.CrossRefGoogle Scholar
  46. 46.
    Ivanov, V.B., Kletochnye mekhanizmy rosta rastenii (Cellular Mechanisms of the Plant Growth), Moscow: Nauka, 2011.Google Scholar
  47. 47.
    Janeczko, A., Gruszka, D., Pociecha, E., et al., Physiological and biochemical characterization of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis, Plant Physiol. Biochem., 2016, vol. 99, pp. 126–141.CrossRefGoogle Scholar
  48. 48.
    Kang, T.-J., Yang, M.-S., and Deckard, E.L., The effect of osmotic potential on anther culture in spring wheat (Triticum aestivum), Plant Cell, Tissue Organ Cult., 2003, vol. 75, pp. 35–40.CrossRefGoogle Scholar
  49. 49.
    Kartal, G., Temel, A., Arican, E., et al., Effects of brassinosteroids on barley root growth, antioxidant system and cell division, Plant Growth Regul., 2009, vol. 58, pp. 261–267.CrossRefGoogle Scholar
  50. 50.
    Khomyakova, T.V., Monitoring of soil droughts in the European part of the Russian Federation (based on ground data), Extended Abstract of Cand. Sci. (Agric.) Dissertation, Moscow: State Univ. Land Use Plan., 2002.Google Scholar
  51. 51.
    Khuder, H.H. and Al-Taei, Yu.I.H., Effect of salt stress on some growth indicators and cellular components of wheat (Triticum aestivum L.) callus, Int. J. Appl. Agric. Sci., 2015, vol. 1, no. 4, pp. 91–94.Google Scholar
  52. 52.
    Kolodyazhnaya, Ya.S., Kutsokon’, N.K., Levenko, B.A., et al., Transgenic plants tolerant to abiotic stresses, Tsitol. Genet., 2009, vol. 43, no. 2, pp. 72–81.Google Scholar
  53. 53.
    Kondic-Spika, A., Petrovic, K., Jevtic, R., et al., Sulfonylurea tolerance of wheat genotypes in zygotic embryo culture, Arch. Biol. Sci. Belgrade, 2009, vol. 61, no. 3, pp. 453–458.CrossRefGoogle Scholar
  54. 54.
    Kononenko, N.V., Baranova, E.N., Gulevich, A.A., et al., Influence of sodium chloride and sodium sulfate on the cell cycle indices in the root system of transgenic tomato plants, Izv. Timiryazevsk. S-kh. Akad., 2013, no. 6, pp. 49–56.Google Scholar
  55. 55.
    Kosova, K., Vitamvas, P., Prasil, I.T., et al., Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response, J. Proteomics, 2011, vol. 15, pp. 51–58.Google Scholar
  56. 56.
    Kruglova, N.N., Callus as a model for analysis the higher plant ontogenesis, Izv. Ufim. Nauch. Tsentra, Ross. Akad. Nauk, 2011, no. 3, pp. 17–22.Google Scholar
  57. 57.
    Kruglova, N.N. and Katasonova, A.A., Immature wheat embryo as a morphogenetically competent explant, Fiziol. Biokhim. Kul’t. Rast., 2009, vol. 41, no. 2, pp. 124–131.Google Scholar
  58. 58.
    Kruglova, N.N. and Seldimirova, O.A., Morphogenesis in the androclinal calli of cereals: cytohistological features, Usp. Sovrem. Biol., 2010, vol. 130, no. 3, pp. 247–257.Google Scholar
  59. 59.
    Kruglova, N.N. and Seldimirova, O.A., Regeneratsiya pshenitsy in vitro i ex vitro: tsitogistologicheskie aspekty (Regeneration of Wheat in vitro and in ex vitro: Cytohistological Aspects), Ufa: Gilem, 2011.Google Scholar
  60. 60.
    Kruglova, N.N. and Seldimirova, O.A., Morphogenesis in vitro of cells of androclinic callus of wheat, Fiziol. Rast. Genet., 2013, vol. 45, no. 5, pp. 382–389.Google Scholar
  61. 61.
    Kruglova, N.N., Batygina, T.B., Gorbunova, V.Yu., et al., Embriologicheskie osnovy androklinii pshenitsy (Embryology of Wheat Androcliny), Moscow: Nauka, 2005.Google Scholar
  62. 62.
    Kruglova, N.N., Seldimirova, O.A., Zaitsev, D.Yu., et al., Development of androclinal regenerants of wheat in vitro and ex vitro, Izv. Ufim. Nauch. Tsentra, Ross. Akad. Nauk, 2017a, no. 3, pp. 21–25.Google Scholar
  63. 63.
    Kruglova, N.N., Seldimirova, O.A., Zaitsev, D.Yu., et al., The development of androclinal wheat plants in the field conditions, Izv. Ufim. Nauch. Tsentra, Ross. Akad. Nauk, 2017b, no. 3, pp. 26–30.Google Scholar
  64. 64.
    Kudoyarova, G.R., Dodd, I.C., Veselov, D.S., et al., Common and specific responses to availability of mineral nutrients and water, J. Exp. Bot., 2015, vol. 66, pp. 2133–2144.CrossRefGoogle Scholar
  65. 65.
    Kuluev, B.R., Kruglova, N.N., Zaripova, A.A., et al., Osnovy biotekhnologii rastenii (Plant Biotechnology), Ufa: Bashkir. Gos. Univ., 2017.Google Scholar
  66. 66.
    Kunakh, V.A., Variability of the plant genome in dedifferentiation and callusogenesis in vitro, Fiziol. Rast., 1999, vol. 46, no. 6, pp. 919–929.Google Scholar
  67. 67.
    Kuznetsov, V.V. and Dmitrieva, G.A., Fiziologiya rastenii (The Plant Physiology), Moscow: Abris, 2011.Google Scholar
  68. 68.
    Lukatin, A.S., Use of maize callus culture for evaluation of cold stress tolerance, Dokl. Ross. Akad. S-kh. Nauk, 2010, no. 5, pp. 10–15.Google Scholar
  69. 69.
    Lutova, L.A., Ezhova, T.A., Dodueva, I.E., et al., Genetika razvitiya rastenii (Genetics of Plant Development), Inge-Vechtomov, S.G., Ed., St. Petersburg: N-L, 2010.Google Scholar
  70. 70.
    Marchenko, A.O., Realization of morphogenetic potential by the plant organisms, Usp. Sovrem. Biol., 1996, vol. 116, no. 3, pp. 306–319.Google Scholar
  71. 71.
    Mardamshin, A.G., Trapeznikov, V.K., Urazbakhtina, N.A., et al., Reaction of the plants and callus tissue on the gradient of mineral elements in environment, Agrokhimiya, 2001, no. 8, pp. 27–29.Google Scholar
  72. 72.
    Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, vol. 59, no. 4, pp. 502–514.CrossRefGoogle Scholar
  73. 73.
    Medvedev, S.S. and Sharova, E.I., Genetic and epigenetic regulation of plant development, Zh. Sib. Fed. Univ., Ser.: Biol., 2010, no. 3, pp. 109–129.Google Scholar
  74. 74.
    Melida, H., Garcia-Angulo, P., Alonso-Simon, A., et al., Novel type II cell wall architecture in dichlobenil-habituated maize calluses, Planta, 2009, vol. 229, pp. 617–631.CrossRefGoogle Scholar
  75. 75.
    Merks, R.M.H. and Guravage, M.A., Building simulation models of developing plant organs using VirtualLeaf, in Plant Organogenesis, Methods in Molecular Biology vol. 959. New York: Springer-Verlag, 2013, pp. 333–352.Google Scholar
  76. 76.
    Meristematic Tissues in Plant Growth and Development, McManus, M.T. and Veit, B., Eds., Chichester: Wiley, 2002.Google Scholar
  77. 77.
    Mitić, N., Dodig, D., Nikolić, R., et al., Effects of donor plant environmental conditions on immature embryo cultures derived from worldwide origin wheat genotypes, Russ. J. Plant Physiol., 2009, vol. 56, no. 4, pp. 540–545.Google Scholar
  78. 78.
    Mussig, C., Shin, G.-H., and Altmann, Th., Brassinosteroids promote root growth in Arabidopsis, Plant Physiol., 2003, vol. 133, no. 3, pp. 1261–1271.CrossRefGoogle Scholar
  79. 79.
    Naik, S.K. and Chand, P.K., Tissue culture-mediated biotechnological intervention in pomegranate: a review, Plant Cell Rep., 2011, vol. 30, pp. 707–721.CrossRefGoogle Scholar
  80. 80.
    Nasonov, D.N. and Aleksandrov, V.Ya., The colloidal changes in protoplasm and increase in its affinity for dyes under the influence of damaging effects, Arkh. Anat., Gistol. Embriol., 1939, vol. 22, no. 1, pp. 1–43.Google Scholar
  81. 81.
    Nezhadahmadi, A., Hossain, P.Z., and Faruq, G., Drought tolerance in wheat, Sci. World J., 2013, art. ID 610721. doi 10.1155/2013/610721Google Scholar
  82. 82.
    Nikitina, E.D., Khlebova, L.P., and Ereshchenko, O.V., Cell selection of winter wheat for tolerance to abiotic stress, Izv. Altai. Gos. Univ., Biol. Nauki, 2014, no. 3-2, pp. 50–54.Google Scholar
  83. 83.
    Nikiforova, I.D., Chernov, V.A., Shvidchenko, V.K., and Butenko, R.G., Growth and morphogenesis of the cells of winter wheat and selection of tolerant variants, Materialy mezhdunarodnoi konferentsii “Biologiya kul’tiviruemykh kletok i biotekhnologiya,” Novosibirsk, 2–6 avgusta 1988 g., Tezisy dokladov (Proc. Int. Conf. “Biology of Cultivated Cells and Biotechnology,” Novosibirsk, August 2–6, 1988, Abstracts of Papers), Novosibirsk, 1988, part 1, pp. 178–179.Google Scholar
  84. 84.
    Nosov, A.M., Plant cell culture: unique system, model, and tool, Russ. J. Plant Physiol., 1999, vol. 46, no. 6, pp. 731–738.Google Scholar
  85. 85.
    Orlova, E.V., Gladkov, E.A., Gladkova, O.V., et al., Evaluation of oil toxicity for the creeping bentgrass (Agrostis stolonifera L.) and biotechnological production of tolerant plants, S-kh. Biol., 2011, no. 4, pp. 96–101.Google Scholar
  86. 86.
    Oshmarina, V.I., Shamina, Z.B., and Butenko, R.G., Preparation of NaCl- and etionin-resistant cell lines Nicotiana sylvestris and their characteristics, Genetika, 1983, no. 5, pp. 822–827.Google Scholar
  87. 87.
    Perez-Clemente, R.M. and Gomez-Cadenas, A., In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions, in Recent Advances in Plant in vitro Culture, Leva, A. and Rinaldi, L., Eds., London: Intech Open, 2012. doi 10.5772/50671Google Scholar
  88. 88.
    Phytohormones and Abiotic Stress Tolerance in Plants, Khan, N.A., Nazar, R., Iqbal, N., and Anjum, N.A., Eds., Berlin: Springer-Verlag, 2012.Google Scholar
  89. 89.
    Plant Propagation by Tissue Culture, George, E.F., Hall, M.A., and De Klerk, G.-J., Eds., Dordrecht: Springer-Verlag, 2008.Google Scholar
  90. 90.
    Rang, T.-J., Yang, M.-S., and Deckard, E.I., The effect of osmotic potential on anther culture in spring wheat (Triticum aestivum), Plant Cell, Tissue Organ Cult., 2003, vol. 75, pp. 35–40.CrossRefGoogle Scholar
  91. 91.
    Sankepally, S.S.R., Talluri, V.R., Arulmarianathan, J.P., et al., Callus induction and regeneration capabilities of indica rice cultivars to salt stress, J. Biomol. Res. Ther., 2016, vol. 4, no. 136. doi 10.4172/2167-7956.1000136Google Scholar
  92. 92.
    Seldimirova, O.A., Kudoyarova, G.R., Kruglova, N.N., et al., Changes in distribution of cytokinins and auxins in cell during callus induction and organogenesis in vitro in immature embryo culture of wheat, In Vitro Cell. Dev. Biol.: Plant, 2016, vol. 52, no. 3, pp. 251–264.CrossRefGoogle Scholar
  93. 93.
    Seldimirova, O.A., Bezrukova, M.V., Galin, I.R., et al., 24‑Epibrassinolide effects on in vitro callus tissue formation, growth, and regeneration in wheat varieties with contrasting drought resistance, Russ. J. Plant Physiol., 2017, vol. 64, no. 6, pp. 919–929.CrossRefGoogle Scholar
  94. 94.
    Selye, H., The Stress of Life, New York: McGraw-Hill, 1956.Google Scholar
  95. 95.
    Shakirova, F.M., Nespitsificheskaya ustoichivost’ rastenii k stressovym faktoram i ee regulyatsiya (Regulation of Nonspecific Resistance of the Plants to Stress Factors), Ufa: Gilem, 2001.Google Scholar
  96. 96.
    Shakirova, F., Allagulova, Ch., Maslennikova, D., et al., Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress, Plant Physiol. Biochem., 2016, vol. 108, pp. 539–548.CrossRefGoogle Scholar
  97. 97.
    Shinozaki, K. and Yamaguchi-Shinozaki, K., Gene networks involved in drought stress response and tolerance, J. Exp. Bot., 2007, vol. 58, no. 2, pp. 221–227.CrossRefGoogle Scholar
  98. 98.
    Shirokikh, I.G., Shupletsova, O.N., and Shchennikova, I.N., Cultivation in vitro of barley tolerant to toxic effect of aluminum in acidic soils, Biotekhnologiya, 2009, no. 3, pp. 40–48.Google Scholar
  99. 99.
    Shirokikh, I.G., Ogorodnikova, S.Y., Dalke, I.V., and Shupletsova, O.N., Biochemical and physiological estimation of barley regenerants obtained in selective systems, Biol. Bull., 2011, vol. 38, no. 6, pp. 602–607.CrossRefGoogle Scholar
  100. 100.
    Shupletsova, O.N. and Shchennikova, I.N., Use of cell technologies for creation of new varieties of barley tolerant to toxic aluminum and drought, Vavilovsk. Zh. Genet. Selekts., 2016, vol. 20, no. 5, pp. 623–628.Google Scholar
  101. 101.
    Sinnott, E.W., Plant Morphogenesis, New York: McGraw-Hill, 1960.CrossRefGoogle Scholar
  102. 102.
    Soboleva, M.I. and Loginov, I.V., Statistical parameters reflecting morphogenetic capacity of soft spring wheat calluses, Russ. J. Plant Physiol., 2004, vol. 51, no. 2, pp. 257–265.CrossRefGoogle Scholar
  103. 103.
    Solov’eva, A.I., Gaisinskii, V.V., and Dolgikh, Yu.I., Effect of copper ions on genetic variability in two maize callus lines of different ages, Russ. J. Plant Physiol., 2015, vol. 62, no. 1, pp. 80–85.CrossRefGoogle Scholar
  104. 104.
    Staroverov, V.V., Stepanova, A.Yu., Tereshonok, D.V., and Litvinova, I.I., Cell selection of the blue flax (Linum perenne L.) in vitro for tolerance to oxidative stress, in Plodovodstvo i yagodovodstvo Rossii (Fruit and Berry Industrial Cultivation in Russia), Moscow: Vseross. Selekts.-Tekhnol. Inst. Sadovod. Pitomnikovodstva, 2011, pp. 230–236.Google Scholar
  105. 105.
    Stetsenko, L.A., Vedenicheva, N.P., Likhnevsky, R.V., and Kuznetsov, V.V., Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity, Biol. Bull., 2015, vol. 42, no. 2, pp. 98–107.CrossRefGoogle Scholar
  106. 106.
    Stupko, V.Yu., Zobova, N.V., and Gaevskii, N.A., Stress-depended photosynthetic activity of proliferating callus cultures of wheat, Izv. Kaliningr. Gos. Tekh. Univ., 2015, no. 36, pp. 107–113.Google Scholar
  107. 107.
    Sugiyama, M., Historical review of research on plant cell dedifferentiation, J. Plant Res., 2015, vol. 128, no. 5, pp. 349–359.CrossRefGoogle Scholar
  108. 108.
    Talukdar, T., Development of NaCl-tolerant line in an endangered ornamental Adenium multiflorum Klotzsch through in vitro selection, Int. J. Recent Sci. Res., 2012, vol. 3, no. 10, pp. 812–821.Google Scholar
  109. 109.
    Terletskaya, N.V., Nespetsificheskie reaktsii zernovykh zlakov na abioticheskie stressy in vivo i in vitro (Nonspecific Reactions of Grain Cereals on Abiotic Stress in vivo and in vitro), Almaty: IP N.A. Volkova, 2012.Google Scholar
  110. 110.
    Terletskaya, N.V., Zobova, N.V., Stupko, V.Yu., et al., Izuchenie ustoichivosti fotosinteticheskogo apparata myagkoi pshenitsy (T. aestivum L.) i ee dikikh sorodichei k abioticheskim stressoram in vivo i in vitro (Resistance of Photosynthetic Apparatus of Soft Wheat (T. aestivum L.) and Its Wild Varieties to Abiotic Stress in vitro and in vivo), Almaty: IP N.A. Volkova, 2017.Google Scholar
  111. 111.
    Tian, Q., Lin, Yu., Yang, M., et al., DlRan3A is involved in hormone, light, and abiotic stress responses in embryogenic callus of Dimocarpus longan Lour., Gene, 2015, vol. 569, pp. 267–275. doi 10.1016/j.gene.2015.06.013CrossRefGoogle Scholar
  112. 112.
    Todaka, D., Nakashima, K., Shinozaki, K., et al., Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice, Rice, 2012, vol. 5, pp. 1–6.CrossRefGoogle Scholar
  113. 113.
    Tuchin, S.V., Modeling the stress of dehydration and its biological consequences in a culture of isolated wheat tissues, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: All-Russ. Sci.-Res. Inst. Agric. Biotechnol., Russ. Acad. Agric. Sci., 2000.Google Scholar
  114. 114.
    Vartapetyan, B.B., Dolgikh, Yu.I., Polyakova, L.I., et al., Biotechnological approaches in creation of the plants tolerant of hypoxia and anoxia, Acta Nat., 2014, vol. 6, no. 2 (21), pp. 21–33.Google Scholar
  115. 115.
    Vardhini, B.V. and Anjum, N.A., Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system, Front. Plant Sci., 2015, vol. 2. doi 10.3389/fenvs.2014.00067Google Scholar
  116. 116.
    Veselov, D.S., Kudoyarova, G.R., Kudryakova, N.V., and Kuznetsov, V.V., Role of cytokinins in stress resistance of plants, Russ. J. Plant Physiol., 2017, vol. 64, no. 1, pp. 15–27.CrossRefGoogle Scholar
  117. 117.
    Vriet, C., Russinova, E., and Reuzeau, C., Boosting crop yields with plant steroids, Plant Cell, 2012, vol. 24, pp. 842–857.CrossRefGoogle Scholar
  118. 118.
    Wang, W., Vinocur, B., and Altman, A., Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance, Planta, 2003, vol. 218, pp. 1–14.CrossRefGoogle Scholar
  119. 119.
    Wani, S.H., Sofi, P.A., Gosal, S.S., et al., In vitro screening of rice (Oryza sativa L.) callus for drought tolerance, Commun. Biometry Crop Sci., 2010, vol. 5, no. 2, pp. 108–115.Google Scholar
  120. 120.
    Yadav, S. and Sharma, K.D., Molecular and morphophysiological analysis of drought stress in plants, in Plant Growth, Rigobelo, E.C., Ed., London: Intech Open, 2016, ch. 10. doi 10.5772/65246Google Scholar
  121. 121.
    Zhuravlev, Yu.N. and Omelko, A.M., Plant morphogenesis in vitro, Russ. J. Plant Physiol., 2008, vol. 55, no. 5, pp. 579–596.CrossRefGoogle Scholar
  122. 122.
    Zinchenko, M.A., Dubrovnaya, O.V., and Bavol, A.V., Cell selection of soft wheat for resistance to a complex of stress factors and analysis of the obtained forms, Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk, 2013, vol. 15, no. 3 (5), pp. 1610–1614.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Kruglova
    • 1
  • O. A. Seldimirova
    • 1
  • A. E. Zinatullina
    • 1
  1. 1.Ufa Institute of Biology, Subdivision of the Ufa Federal Research Center, Russian Academy of SciencesUfaRussia

Personalised recommendations