Advertisement

Biology Bulletin Reviews

, Volume 8, Issue 6, pp 472–481 | Cite as

Molecular Markers of Caspase-Dependent and Mitochondrial Apoptosis: Role in the Development of Pathology and Cellular Senescence

  • A. S. Diatlova
  • A. V. Dudkov
  • N. S. Linkova
  • V. Kh. KhavinsonEmail author
Article
  • 8 Downloads

Abstract

The data on the molecular mechanisms of normal and pathological apoptosis are summarized. Three phases of apoptosis are distinguished: signal, effector, and degradation. The signal phase includes the extrinsic (caspase-dependent) and extrinsic (mitochondrial) pathways. Molecular markers of extrinsic and extrinsic apoptotic pathways play an important role in the diagnostics and treatment of immune, bronchopulmonary, excretory, and cardiovascular system pathologies, oncology, and senescence. This review considers the initiator caspases-8 and -9 and the effector caspase-3 as the molecular markers of the caspase-dependent apoptosis. The main molecular markers of the mitochondrial (or caspase-independent) apoptosis are p53, p21, and p16 proteins, which respond to DNA damage and are involved in cellular senescence, as well as chaperon prohibitin and flavoprotein apoptosis-inducing factor.

Keywords:

caspase-dependent apoptosis mitochondrial apoptosis cellular senescence molecular markers 

Notes

REFERENCES

  1. 1.
    Aken van, O., Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development, Plant J., 2007, vol. 52, no. 5, pp. 850–864.Google Scholar
  2. 2.
    Baker, D.J., Wijshake, T., and Tchkonia, T., Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders, Nature, 2011, vol. 479, no. 7372, pp. 232–236.CrossRefGoogle Scholar
  3. 3.
    Baris, O.R., Klose, A., Kloepper, J.E., et al., The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells, Stem Cells, 2011, vol. 29, pp. 1459–1468.Google Scholar
  4. 4.
    Baryshnikov, A.Yu. and Shishkin, Yu.V., Immunologicheskie problemy apoptoza (Immunological Problems of Apoptosis), Moscow: Editorial URSS, 2002.Google Scholar
  5. 5.
    Bedelbaeva, K., Snyder, A., and Gourevitch, D., Lack of p21 expression links cell cycle control and appendage regeneration in mice, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 30, pp. 45–50.Google Scholar
  6. 6.
    Bucchieri, F., Marino Gammazza, A., Pitruzzella, A., et al., Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors, PLoS One, 2015, vol. 10, no. 3, p. e0120510.CrossRefGoogle Scholar
  7. 7.
    Bunz, F., Dutriaux, A., Lengauer, C., et al., Requirement for p53 and p21 to sustain G2 arrest after DNA damage, Science, 1998, vol. 282, no. 5393, pp. 1497–1501.CrossRefGoogle Scholar
  8. 8.
    Chiu, C.-F., Ho, M.-Y., and Peng, J.-M., Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane, Oncogene, 2013, vol. 32, no. 6, pp. 777–787.CrossRefGoogle Scholar
  9. 9.
    Coughlan, M.T., Higgins, G.C., Nguyen, T.V., et al., Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis, Diabetes, 2016, vol. 65, no. 4, pp. 1085–1098.CrossRefGoogle Scholar
  10. 10.
    Creagh, E.M., Caspase crosstalk: integration of apoptotic and innate immune signaling pathways, Trends Immunol., 2014, vol. 35, no. 12, pp. 631–639.CrossRefGoogle Scholar
  11. 11.
    Daszkiewicz, L., Vázquez-Mateo, C., Rackov, G., et al., Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production, Sci. Rep., 2015, vol. 5, pp. 76–91.CrossRefGoogle Scholar
  12. 12.
    Dotto, G.P., p21 (WAF1/Cip1): more than a break to the cell cycle? Biochim. Biophys. Acta, 2000, vol. 1471, no. 1, pp. M43–M56.Google Scholar
  13. 13.
    Eleftheriadis, T., Pissas, G., Antoniadi, G., et al., Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T-cells, Exp. Ther. Med., 2015, vol. 10, no. 5, pp. 1959–1966.CrossRefGoogle Scholar
  14. 14.
    Farina, B., Di Sorbo, G., Chambery, A., et al., Structural and biochemical insights of CypA and AIF interaction, Sci. Rep., 2017, vol. 7, no. 1, pp. 1138–1145.CrossRefGoogle Scholar
  15. 15.
    Giannotta, M., Fragassi, G., Tamburro, A., et al., Prohibitin: a novel molecular player in KDEL receptor signaling, BioMed Res. Int., 2015, art. ID 319454.Google Scholar
  16. 16.
    Golubev, A.M., Moskaleva, E.Yu., Severin, S.E., et al., Apoptosis in critical states, Obshch. Reanimatol., 2006, no. 2, no. 6, pp. 184–190.Google Scholar
  17. 17.
    Gordeeva, A.V., Labas, Y.A., and Zvyagilskaya, R.A., Apoptosis in unicellular organisms: mechanisms and evolution, Biochemistry (Moscow), 2004, vol. 69, no. 10, pp. 1055–1066.Google Scholar
  18. 18.
    Gubskii, Yu.I., Smert’ kletki: svobodnye radikaly, nekroz, apoptoz (Death of a Cell: Free Radicals, Necrosis, and Apoptosis), Vinnitsa: Nova Kniga, 2015.Google Scholar
  19. 19.
    Hangen, E., Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis, Mol. Cell, 2015, vol. 58, pp. 1001–1014.CrossRefGoogle Scholar
  20. 20.
    Hasan, I., Sugawara, S., Fujii, Y., et al., MytiLec, a mussel R-type lectin, interacts with surface glycan Gb3 on Burkitt’s lymphoma cells to trigger apoptosis through multiple pathways, Mar. Drugs, 2015, vol. 13, no. 12, pp. 7377–7389.CrossRefGoogle Scholar
  21. 21.
    Ho, M.Y., Liang, C.M., and Liang, S.M., MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis, Oncotarget, 2015, vol. 6, no. 1, pp. 381–393.Google Scholar
  22. 22.
    Hossen, M.N., Kajimoto, K., Akita, H., et al., Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system, Mol. Ther., 2013, vol. 21, pp. 533–541.Google Scholar
  23. 23.
    Ising, C., Koehler, S., Brähler, S., et al., Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure, EMBO Mol. Med., 2015, vol. 3, pp. 275–287.CrossRefGoogle Scholar
  24. 24.
    Kaushal, G.P. and Shah, S.V., Autophagy in acute kidney injury, Kidney Int., 2016, vol. 89, no. 4, pp. 779–791.CrossRefGoogle Scholar
  25. 25.
    Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 1972, vol. 26, no. 4, pp. 239–257.CrossRefGoogle Scholar
  26. 26.
    Klein, J.A., Longo-Guess, C.M., and Rossmann, M.P., The harlequin mouse mutation downregulates apoptosis-inducing factor, Nature, 2002, vol. 419, pp. 367–374.CrossRefGoogle Scholar
  27. 27.
    Koizumi, Y., Nagase, H., Nakajima, T., et al., Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression, Allergol. Int., 2016, vol. 65, pp. 30–37.CrossRefGoogle Scholar
  28. 28.
    Kolonin, M.G., Saha, P.K., Chan, L., et al., Reversal of obesity by targeted ablation of adipose tissue, Nat. Med., 2004, vol. 10, pp. 625–632.CrossRefGoogle Scholar
  29. 29.
    Krishnamurthy, J., Torrice, C., Ramsey, M.R., et al., Ink4a/Arf expression is a biomarker of aging, J. Clin. Invest., 2004, vol. 114, no. 9, pp. 1299–1307.CrossRefGoogle Scholar
  30. 30.
    Lee, J.Y., Tokumoto, M., Hattori, Y., et al., Different regulation of p53 expression by cadmium exposure in kidney, liver, intestine, vasculature, and brain astrocytes, Toxicol. Res., 2016, vol. 32, no. 1, pp. 73–80.CrossRefGoogle Scholar
  31. 31.
    Lewin, B., Cassimeris, L., and Plopper, G., Cells, Burlington, Ma: Jones & Bartlett Learning, 2007.Google Scholar
  32. 32.
    Li, Z.-J., Yao, C., Liu, S.-F., et al., Cytotoxic effect of icaritin and its mechanisms in inducing apoptosis in human Burkitt lymphoma cell line, BioMed. Res. Int., 2014, vol. 2014, art. ID 391512.Google Scholar
  33. 33.
    Li, F., Chen, Q., Song, X., et al., miR-30b is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of caspase 3, Int. J. Mol. Sci., 2015, vol. 16, no. 8, pp. 682–695.Google Scholar
  34. 34.
    Li, J., Xiong, J., Yang, B., et al., Endothelial cell apoptosis induces TGF-β signaling-dependent host endothelial-mesenchymal transition to promote transplant arteriosclerosis, Am. J. Transplantol., 2015, vol. 15, no. 12, pp. 3095–3111.CrossRefGoogle Scholar
  35. 35.
    Liggett, W.H., Jr. and Sidransky, D., Role of the p16 tumor suppressor gene in cancer, J. Clin. Oncol., 1998, vol. 16, no. 3, pp. 1197–1206.CrossRefGoogle Scholar
  36. 36.
    Lin, C.H., Hong, Y.C., and Kao, S.H., Aeroallergen Der p2 induces apoptosis of bronchial epithelial BEAS-2B cells via activation of both intrinsic and extrinsic pathway, Cell Biosci., 2015, vol. 5, pp. 1–11.CrossRefGoogle Scholar
  37. 37.
    Liu, J., Yang, J.R., Chen, X.M., et al., Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy, Am. J. Physiol. Cell Physiol., 2015, vol. 308, no. 8, pp. 621–630.CrossRefGoogle Scholar
  38. 38.
    Madapura, H.S., Salamon, D., Wiman, K.G., et al., cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response, Cell Cycle, 2016, vol. 15, no. 9, pp. 1267–1275.CrossRefGoogle Scholar
  39. 39.
    Mahata, B., Biswas, S., Rayman, P., et al., GBM derived gangliosides induce T cell apoptosis through activation of the caspase cascade involving both the extrinsic and the intrinsic pathway, PLoS One, 2015, vol. 10, no. 7, p. e0134425.CrossRefGoogle Scholar
  40. 40.
    Maiboroda, A.A., Apoptosis: genes and proteins, Sib. Med. Zh., 2013, no. 3, pp. 130–135.Google Scholar
  41. 41.
    Martín-Caballero, J., Flores, J.M., García-Palencia, P., and Serrano, M., Tumor susceptibility of p21 (Waf1/Cip1)-deficient mice, Cancer Res., 2001, vol. 61, no. 16, pp. 6234–6238.Google Scholar
  42. 42.
    Martynova, E.A., Apoptotic regulation of caspase activity, Russ. J. Bioorg. Chem., 2003, vol. 29, no. 5, pp. 471–495.CrossRefGoogle Scholar
  43. 43.
    McIlwain, D.R., Berger, T., and Mak, T.W., Caspase functions in cell death and disease, Cold Spring Harbor Perspect. Biol., 2013, vol. 5, no. 4, pp. 1–28.CrossRefGoogle Scholar
  44. 44.
    Milasta, S., Dillon, C.P., Sturm, O.E., et al., Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function, Immunity, 2016, vol. 44, no. 1, pp. 88–102.CrossRefGoogle Scholar
  45. 45.
    Mishiro, K., Imai, T., Sugitani, S., et al., Diabetes mellitus aggravates hemorrhagic transformation after ischemic stroke via mitochondrial defects leading to endothelial apoptosis, PLoS One, 2014, vol. 9, no. 8, p. e103818.CrossRefGoogle Scholar
  46. 46.
    Moskalev, A.A., Genetics of aging and life duration, Usp. Gerontol., 2009, vol. 22, no. 1, pp. 92–103.Google Scholar
  47. 47.
    Nagy, N., Matskova, L., Kis, L.L., et al., The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 11966–11971.CrossRefGoogle Scholar
  48. 48.
    Novik, A.A., Kamilova, T.A., and Tsygan, V.N., Vvedenie v molekulyarnuyu biologiyu kantserogeneza (Introduction to Molecular Biology of Carcinogenesis), Moscow: GEOTAR-Media, 2005.Google Scholar
  49. 49.
    Pastore, D., Della-Morte, D., Coppola, A., et al., SGK-1 protects kidney cells against apoptosis induced by ceramide and TNF-α, Cell Death Dis., 2015, vol. 6, p. e1890.CrossRefGoogle Scholar
  50. 50.
    Peng, Y.T., Chen, P., Ouyang, R.Y., and Song, L., Multifaceted role of prohibitin in cell survival and apoptosis, Apoptosis, 2015, vol. 20, no. 9, pp. 1135–1149.CrossRefGoogle Scholar
  51. 51.
    Potapnev, M.P., Autophagy, apoptosis, cell necrosis and immune recognition of own and alien, Immunologiya, 2014, vol. 35, no. 2, pp. 95–102.Google Scholar
  52. 52.
    Pustavoitau, A., Barodka, V., Sharpless, N.E., et al., Role of senescence marker p16 INK4a measured in peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults, Exp. Gerontol., 2016, vol. 74, pp. 29–36.CrossRefGoogle Scholar
  53. 53.
    Read, A.P. and Strachan, T., Human Molecular Genetics, New York: Wiley, 1999, 2nd ed.Google Scholar
  54. 54.
    Rheinwald, J.G., Hahn, W.C., Ramsey, M.R., et al., A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status, Mol. Cell. Biol., 2002, vol. 22, no. 14, pp. 5157–1572.CrossRefGoogle Scholar
  55. 55.
    Ruiz-Magaña, M.J., Rodriguez-Vargas, J.M., Morales, J.C., et al., The DNA methyltransferase inhibitors zebularine and decitabine induce mitochondria-mediated apoptosis and DNA damage in p53 mutant leukemic T cells, Int. J. Cancer, 2011, vol. 130, pp. 1195–1207.Google Scholar
  56. 56.
    Ruiz-Magaña, M.J., Martínez-Aguilar, R., Lucendo, E., et al., The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells, Oncotarget, 2016, vol. 7, no. 16, pp. 21875–21886.Google Scholar
  57. 57.
    Ryzhov, S.V. and Novikov, V.V., Molecular mechanisms of apoptotic processes, Ross. Bioter. Zh., 2002, vol. 1, no. 3, pp. 27–33.Google Scholar
  58. 58.
    Salmena, L., Lemmers, B., Hakem, A., et al., Essential role for caspase-8 in T-cell homeostasis and T-cell-mediated immunity, Genes Dev., 2003, vol. 17, no. 7, pp. 883–895.CrossRefGoogle Scholar
  59. 59.
    Salmina, A.B., Komleva, Yu.K., Kuvacheva, N.V., et al., Inflammation and aging of the brain, Vestn. Ross. Akad. Med. Nauk, 2015, vol. 70, no. 1, pp. 17–25.CrossRefGoogle Scholar
  60. 60.
    Samuilov, V.D., Oleskin, A.V., and Lagunova, E.M., Programmed cell death, Biochemistry (Moscow), 2000, vol. 65, no. 8, pp. 873–887.Google Scholar
  61. 61.
    Schäker, K., Bartsch, S., Patry, C., et al., The bipartite rac1 guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development, J. Biol. Chem., 2015, vol. 290, no. 10, pp. 6408–6418.Google Scholar
  62. 62.
    Shirokova, A.V., Apoptosis. Signaling pathways and cell ion and water balance, Cell Tissue Biol., 2007, vol. 1, no. 3, pp. 215–224.CrossRefGoogle Scholar
  63. 63.
    Susin, S.A., Lorenzo, H.K., and Zamzami, N., Mitochondrial release of caspase-2 and -9 during the apoptotic process, J. Exp. Med., 1999, vol. 189, pp. 381–394.CrossRefGoogle Scholar
  64. 64.
    Thal, S.E., Zhu, C., Thal, S.C., et al., Role of apoptosis inducing factor (AIF) for hippocampal neuronal cell death following global cerebral ischemia in mice, Neurosci. Lett., 2011, vol. 499, pp. 1–3.CrossRefGoogle Scholar
  65. 65.
    Uyanik, B., Grigorash, B.B., Goloudina, A.R., and Demidov, O.N., DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation, Cell Death Discovery, 2017, vol. 3, pp. 17–18.CrossRefGoogle Scholar
  66. 66.
    Vahsen, N., Candé, C., and Brière, J.J., AIF deficiency compromises oxidative phosphorylation, EMBO J., 2004, vol. 23, pp. 4679–4689.CrossRefGoogle Scholar
  67. 67.
    Varga, O.Yu. and Ryabkov, V.A., Apoptosis: definition, mechanisms, and role, Ekol. Chel., 2006, no. 7, pp. 28–32.Google Scholar
  68. 68.
    Wu, G., Cai, J., Han, Y., et al., LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity, Circulation, 2014, vol. 130, no. 17, pp. 1452–1465.CrossRefGoogle Scholar
  69. 69.
    Yang, H.B., Song, W., Chen, L.Y., et al., Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal HaCaT cells, Int. J. Mol. Med., 2014, vol. 33, pp. 507–514.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Diatlova
    • 1
    • 2
  • A. V. Dudkov
    • 2
  • N. S. Linkova
    • 1
    • 2
  • V. Kh. Khavinson
    • 2
    • 3
    Email author
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  3. 3.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations