Advertisement

Advances in Gerontology

, Volume 9, Issue 3, pp 317–326 | Cite as

Gender Specificity of the Effect of Neonatal Melatonin Administration on Lifespan and Age-Associated Pathology in 129/Sv Mice

  • M. N. YurovaEmail author
  • M. L. Tyndyk
  • I. G. Popovich
  • A. G. Golubev
  • V. N. Anisimov
Article
  • 3 Downloads

Abstract

Melatonin is subcutaneously administered in a single dose of 1.2 μg to 129/Sv mice at days 3, 5, and 7 after birth, and the mice are observed until natural death. In adult males, a decrease in the body weight and a reduction of the contribution of lung lesions detected during postmortal autopsy to mortality are detected. In adult females, an increase in the proportion of mice with impaired estrous cycle at the later stages of life and an acceleration of the mortality associated with uterine hemangioma are observed with the absence of any effect of melatonin on the body weight. Changes in the frequency of detection of other tumors are multidirectional: there is a decrease in the frequency in males and an increase in females. The age of death of the last 25% and 10% of males increases, while in females it decreases. An analysis of the complete survivorship curves using the Gompertz model does not reveal changes in the rate of aging and initial mortality sufficient to go beyond the limits determined by the artifact component of the Strehler–Mildvan correlation between these parameters. In general, the tendencies noted in males and females are multidirectional: favorable and unfavorable, respectively. Melatonin is contraindicated for pregnant and nursing women and children under 18 years old. The gender specificity of the effects of melatonin, apparently, should be considered when assessing the feasibility of its prescription to these categories.

Keywords:

melatonin neonatal administration lifespan aging Gompertz law Strehler–Mildvan model estrous cycles tumors gender-specific effects 

Notes

FUNDING

This work was partly supported by the Russian Presidential Scholarship (project no. SP-1252.2016.4) and the Russian Science Foundation (project no. 17-304-50013\17).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (CETS no. 123) was followed.

REFERENCES

  1. 1.
    Vinogradova, I.A., Bukalev, A.V., Zabezhinskii, M.A., Semenchenko, A.V., and Anisimov, V.N., Effect of illumination regime and melatonin on homeostasis, life expectancy, and the development of spontaneous tumors in female rats, Usp. Gerontol., 2007, vol. 20, no. 4, pp. 40–47.Google Scholar
  2. 2.
    Vinogradova, I.A., Bukalev, A.V., Zabezhinskii, M.A., et al., Effect of illumination regime and melatonin on homeostasis, life expectancy, and the development of spontaneous tumors in female rats, Vopr. Onkol., 2008, vol. 54, no. 1, pp. 70–77.Google Scholar
  3. 3.
    Anisimov, V.N., Effects of melatonin on longevity, in Modulating Aging Longevity, Rattan, S., Ed., Dordrecht: Kluwer, 2003, vol. 5, pp. 239–260.Google Scholar
  4. 4.
    Anisimov, V.N., Alimova, I.N., Baturin, D.A., et al., The effect of melatonin treatment regimen on mammary adenocarcinoma development in HER-2/neu transgenic mice, Int. J. Cancer, 2003, vol. 103, pp. 300–305.  https://doi.org/10.1002/ijc.10827 CrossRefGoogle Scholar
  5. 5.
    Anisimov, V.N., Arbeev, K.G., Popovich, I.G., et al., Is early life body weight a predictor of longevity and tumor risk in rats?, Exp. Gerontol., 2004, vol. 39, pp. 807–816.  https://doi.org/10.1016/j.exger.2004.02.004 CrossRefGoogle Scholar
  6. 6.
    Anisimov, V.N., Arbeev, K.G., Popovich, I.G., et al., Body weight is not always a good predictor of longevity in mice, Exp. Gerontol., 2004, vol. 39, pp. 305–319.  https://doi.org/10.1016/j.exger.2003.12.007 CrossRefGoogle Scholar
  7. 7.
    Anisimov, V.N., Berstein, L.M., Egormin, P.A., et al., Metformin slows down aging and extends life span of female SHR mice, Cell Cycle, 2008, vol. 7, pp. 2769–2773.  https://doi.org/10.4161/cc.7.17.6625 CrossRefGoogle Scholar
  8. 8.
    Anisimov, V.N., Berstein, L.M., Popovich, I.G., et al., If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice, Aging, 2011, vol. 3, pp. 148–157.CrossRefGoogle Scholar
  9. 9.
    Anisimov, V.N., Piskunova, T.S., Popovich, I.G., et al., Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice, Aging, 2010, vol. 2, pp. 945–958.CrossRefGoogle Scholar
  10. 10.
    Anisimov, V.N., Popovich, I.G., Zabezhinski, M.A. Methods of testing pharmacological drugs effects on aging and life span in mice, Methods Mol. Biol., 2013, vol. 1048, pp. 145–160.  https://doi.org/10.1007/978-1-62703-556-9_12 CrossRefGoogle Scholar
  11. 11.
    Anisimov, V.N., Popovich, I.G., Zabezhinski, M.A., et al., Melatonin as antioxidant, geroprotector and anticarcinogen, Biochim. Biophys. Acta: Bioenerg., 2006, vol. 1757, pp. 573–589.  https://doi.org/10.1016/j.bbabio.2006.03.012 CrossRefGoogle Scholar
  12. 12.
    Anisimov, V.N., Popovich, I.G., Zabezhinski, M.A., et al., Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin, Cell Cycle, 2015, vol. 14, pp. 46–45.  https://doi.org/10.4161/15384101.2014.973308 CrossRefGoogle Scholar
  13. 13.
    Anisimov, V.N., Zavarzina, N.Y., Zabezhinski, M.A., et al., Melatonin increases both life span and tumor incidence in female CBA mice, J. Gerontol., Ser. A, 2001, vol. 56, pp. B311–B323.Google Scholar
  14. 14.
    Anversa, P., Aging and longevity: the IGF-1 enigma, Circ. Res., 2005, vol. 97, pp. 411–414.  https://doi.org/10.1161/01.res.0000182212.09147.56 CrossRefGoogle Scholar
  15. 15.
    Barardo, D., Thornton, D., Thoppil, H., et al., The DrugAge database of aging-related drugs, Aging Cell, 2017, vol. 16, pp. 594–597.  https://doi.org/10.1111/acel.12585 CrossRefGoogle Scholar
  16. 16.
    Brayton, C.F., Treuting, P.M., and Ward, J.M., Pathobiology of aging mice and GEM: background strains and experimental design, Vet. Pathol., 2012, vol. 49, pp. 85–105.  https://doi.org/10.1177/0300985811430696 CrossRefGoogle Scholar
  17. 17.
    Burger, O. and Missov, T.I., Evolutionary theory of ageing and the problem of correlated Gompertz parameters, J. Theor. Biol., 2016, vol. 408, pp. 34–41.  https://doi.org/10.1016/j.jtbi.2016.08.002 CrossRefGoogle Scholar
  18. 18.
    Cipolla-Neto, J., Amaral, F.G., Afeche, S.C., et al., Melatonin, energy metabolism, and obesity: a review, J. Pineal Res., 2014, vol. 56, pp. 371–381.  https://doi.org/10.1111/jpi.12137 CrossRefGoogle Scholar
  19. 19.
    Clancy, B., Finlay, B.L., Darlington, R.B., and Anand, K.J., Extrapolating brain development from experimental species to humans, Neurotoxicology, 2007, vol. 28, pp. 931–937.  https://doi.org/10.1016/j.neuro.2007.01.014 CrossRefGoogle Scholar
  20. 20.
    Davis, K., Chamseddine, D., and Harper, J.M., Nutritional limitation in early postnatal life and its effect on aging and longevity in rodents, Exp. Gerontol., 2016, vol. 86, pp. 84–89.  https://doi.org/10.1016/j.exger.2016.05.001 CrossRefGoogle Scholar
  21. 21.
    De Magalhaes, J.P., Cabral, J.A., and Magalhaes, D., The influence of genes on the aging process of mice: a statistical assessment of the genetics of aging, Genetics, 2005, vol. 169, pp. 265–274.  https://doi.org/10.1534/genetics.104.032292 CrossRefGoogle Scholar
  22. 22.
    Ding, A.-J., Zheng, S.-Q., Huang, X.-B., et al., Current perspective in the discovery of anti-aging agents from natural products, Nat. Prod. Bioprospect., 2017.  https://doi.org/10.1007/s13659-017-0135-9
  23. 23.
    Favero, G., Franceschetti, L., Buffoli, B., et al., Melatonin: protection against age-related cardiac pathology, Ageing Res. Rev., 2017, vol. 35, pp. 336–349.  https://doi.org/10.1016/j.arr.2016.11.007 CrossRefGoogle Scholar
  24. 24.
    Forman, H.J., Redox signaling: an evolution from free radicals to aging, Free Radical Biol. Med., 2016, vol. 97, pp. 398–407.  https://doi.org/10.1016/j.freeradbiomed.2016.07.003 CrossRefGoogle Scholar
  25. 25.
    Gavrilov, L.A. and Gavrilova, N.S., The Biology of Life Span: A Quantitative Approach, New York: Harwood Academic, 1991.Google Scholar
  26. 26.
    Golubev, A., Hanson, A.D., and Gladyshev, V.N., A tale of two concepts: Harmonizing the free radical and antagonistic pleiotropy theories of aging, Antioxid. Redox Signaling, 2017.  https://doi.org/10.1089/ars.2017.7105
  27. 27.
    Golubev, A., Panchenko, A., and Anisimov, V., Applying parametric models to survival data: tradeoffs between statistical significance, biological plausibility, and common sense, Biogerontology, 2018, vol. 19, pp. 341–365.  https://doi.org/10.1007/s10522-018-9759-3 CrossRefGoogle Scholar
  28. 28.
    Grigg-Damberger, M.M. and Ianakieva, D., Poor quality control of over-the-counter melatonin: What they say is often not what you get, J. Clin. Sleep Med., 2017, vol. 13, pp. 163–165.  https://doi.org/10.5664/jcsm.6434 CrossRefGoogle Scholar
  29. 29.
    Hardeland, R., Melatonin in healthy aging and longevity, in Hormones in Ageing and Longevity, Rattan, S. and Sharma, R., Eds., New York: Springer-Verlag, 2017, pp. 209–242.  https://doi.org/10.1007/978-3-319-63001-4_10 Google Scholar
  30. 30.
    Hassell, K.J., Reiter, R.J., and Robertson, N.J., Melatonin and its role in neurodevelopment during the perinatal period: a review, Fetal Maternal Med. Rev., 2013, vol. 24, pp. 76–107.  https://doi.org/10.1017/S0965539513000089 CrossRefGoogle Scholar
  31. 31.
    Jenwitheesuk, A., Park, S., Wongchitrat, P., et al., Comparing the effects of melatonin with caloric restriction in the hippocampus of aging mice: involvement of sirtuin1 and the FOXOs pathway, Neurochem. Res., 2018, vol. 43, pp. 144–152.  https://doi.org/10.1007/s11064-017-2369-7 CrossRefGoogle Scholar
  32. 32.
    Kennaway, D.J., Potential safety issues in the use of the hormone melatonin in paediatrics, J. Paediatr. Child Health, 2015, vol. 51, pp. 584–589.  https://doi.org/10.1111/jpc.12840 CrossRefGoogle Scholar
  33. 33.
    Laste, G., Ripoll Rozisky, J., Caumo, W., and Lucena da Silva Torres, I., Short- but not long-term melatonin administration reduces central levels of brain-derived neurotrophic factor in rats with inflammatory pain, Neuroimmunomodulation, 2015, vol. 22, pp. 358–364.CrossRefGoogle Scholar
  34. 34.
    Martin-Montalvo, A., Mercken, E.M., Mitchell, S.J., et al., Metformin improves health span and lifespan in mice, Nat. Commun., 2013, vol. 4.  https://doi.org/10.1038/ncomms3192
  35. 35.
    Mayo, J.C., Sainz, R.M., Menéndez, P.G., et al., Melatonin and sirtuins: a “not-so unexpected” relationship, J. Pineal Res., 2017, vol. 62.  https://doi.org/10.1111/jpi.12391
  36. 36.
    Montano, M.E., Molpeceres, V., Mauriz, J.L., et al., Effect of melatonin supplementation on food and water intake in streptozotocin-diabetic and non-diabetic male Wistar rats, Nutr. Hosp., 2010, vol. 25, pp. 931–938.  https://doi.org/10.3305/nh.2010.25.6.4803 Google Scholar
  37. 37.
    Moskalev, A., Chernyagina, E., De Magalhaes, J.P., et al., Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease, Aging, 2015, vol. 7, pp. 616–628.CrossRefGoogle Scholar
  38. 38.
    Naji, L., Carrillo-Vico, A., Guerrero, J.M., and Calvo, J.R., Expression of membrane and nuclear melatonin receptors in mouse peripheral organs, Life Sci., 2004, vol. 74, pp. 2227–2236.  https://doi.org/10.1016/j.lfs.2003.08.046 CrossRefGoogle Scholar
  39. 39.
    Nooshinfar, E., Safaroghli-Azar, A., Bashash, D., and Akbari, M.E., Melatonin, an inhibitory agent in breast cancer, Breast Cancer, 2017, vol. 24, pp. 42–51.  https://doi.org/10.1007/s12282-016-0690-7 CrossRefGoogle Scholar
  40. 40.
    Onaolapo, O.J. and Onaolapo, A.Y., Melatonin, adolescence, and the brain: An insight into the period-specific influences of a multifunctional signaling molecule, Birth Defects Res., 2017, vol. 109, pp. 1659–1671.  https://doi.org/10.1002/bdr2.1171 CrossRefGoogle Scholar
  41. 41.
    Park, H.T., Baek, S.Y., Kim, B.S., et al., Developmental expression of ‘RZR beta, a putative nuclear-melatonin receptor’ mRNA in the suprachiasmatic nucleus of the rat, Neurosci. Lett., 1996, vol. 217, pp. 17–20.CrossRefGoogle Scholar
  42. 42.
    Poeggeler, B., Melatonin, aging, and age-related diseases, Endocrine, 2005, vol. 27, pp. 201–212.  https://doi.org/10.1385/endo:27:2:201 CrossRefGoogle Scholar
  43. 43.
    Posadzki, P.P., Bajpai, R., Kyaw, B.M., et al., Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action, BMC Med., 2018, vol. 16.  https://doi.org/10.1186/s12916-017-1000-8
  44. 44.
    Preston, J.D., Reynolds, L.J., and Pearson, K.J., Developmental origins of health span and life span: a mini-review, Gerontology, 2018, vol. 64, pp. 237–245.CrossRefGoogle Scholar
  45. 45.
    Ramis, M.R., Esteban, S., Miralles, A., et al., Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases, Mech. Ageing Dev., 2015, vols. 146–148, pp. 28–41.  https://doi.org/10.1016/j.mad.2015.03.008
  46. 46.
    Reiter, R., Tan, D., Rosales-Corral, S., et al., Mitochondria: Central organelles for melatonin’s antioxidant and anti-aging actions, Molecules, 2018, vol. 23, p. 509.CrossRefGoogle Scholar
  47. 47.
    Reiter, R.J., Mayo, J.C., Tan, D.X., et al., Melatonin as an antioxidant: under promises but over delivers, J. Pineal Res., 2016, vol. 61, pp. 253–278.  https://doi.org/10.1111/jpi.12360 CrossRefGoogle Scholar
  48. 48.
    Rodriguez, M.I., Escames, G., Lopez, L.C., et al., Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice, Exp. Gerontol., 2008, vol. 43, pp. 749–756.  https://doi.org/10.1016/j.exger.2008.04.003 CrossRefGoogle Scholar
  49. 49.
    Schmidt, M., Enthoven, L., van der Mark, M., et al., The postnatal development of the hypothalamic–pituitary–adrenal axis in the mouse, Int. J. Dev. Neurosci., 2003. V. 21, pp. 125–132.  https://doi.org/10.1016/S0736-5748(03)00030-3 CrossRefGoogle Scholar
  50. 50.
    Sies, H., Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress, Redox Biol., 2017, vol. 11, pp. 613–619.  https://doi.org/10.1016/j.redox.2016.12.035 CrossRefGoogle Scholar
  51. 51.
    Sohal, R.S. and Forster, M.J., Caloric restriction and the aging process: a critique, Free Radical Biol. Med., 2014, vol. 73, pp. 366–382.  https://doi.org/10.1016/j.freeradbiomed.2014.05.015 CrossRefGoogle Scholar
  52. 52.
    Strong, R., Miller, R.A., Antebi, A., et al., Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer, Aging Cell, 2016, vol. 15, pp. 872–884.  https://doi.org/10.1111/acel.12496 CrossRefGoogle Scholar
  53. 53.
    Sun, H., Gusdon, A.M., and Qu, S., Effects of melatonin on cardiovascular diseases: progress in the past year, Curr. Opin. Lipidol., 2016, vol. 27, pp. 408–413.  https://doi.org/10.1097/MOL.0000000000000314 CrossRefGoogle Scholar
  54. 54.
    Sun, L.Y., Fang, Y., Patki, A., et al., Longevity is impacted by growth hormone action during early postnatal period, eLife, 2017, vol. 6.  https://doi.org/10.7554/eLife.24059
  55. 55.
    Tain, Y.-L., Huang, L.-T., and Hsu, C.-N., Developmental programming of adult disease: reprogramming by melatonin?, Int. J. Mol. Sci., 2017, vol. 18.  https://doi.org/10.3390/ijms18020426
  56. 56.
    Tarkhov, A.E., Menshikov, L.I., and Fedichev, P.O., Strehler–Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 2017, vol. 416, pp. 180–189.  https://doi.org/10.1016/j.jtbi.2017.01.017 CrossRefGoogle Scholar
  57. 57.
    Terrón, M.P., Delgado-Adámez, J., Pariente, J.A., et al., Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats, Physiol. Behav., 2013, vol. 118, pp. 8–13.  https://doi.org/10.1016/j.physbeh.2013.04.006
  58. 58.
    Vaiserman, A. and Lushchak, O., Implementation of longevity promoting supplements and medications in public health practice: achievements, challenges and future perspectives, J. Translat. Med., 2017, vol. 15.  https://doi.org/10.1186/s12967-017-1259-8
  59. 59.
    Wilkinson, D., Shepherd, E., and Wallace, E.M., Melatonin for women in pregnancy for neuroprotection of the fetus, Cochrane Database Syst. Rev., 2016, vol. 3.  https://doi.org/10.1002/14651858.CD010527.pub2
  60. 60.
    Wu, L., Zhou, B., Oshiro-Rapley, N., et al., An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer, Cell, 2016, vol. 167, pp. 1705–1718.  https://doi.org/10.1016/j.cell.2016.11.055 CrossRefGoogle Scholar
  61. 61.
    Wu, Y.H., Zhou, J.N., Balesar, R., et al., Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: co-localization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone, J. Comp. Neurol., 2006, vol. 499, pp. 897–910.  https://doi.org/10.1002/cne.21152 CrossRefGoogle Scholar
  62. 62.
    Yen, K., Steinsaltz, D., and Mobbs, C.V., Validated analysis of mortality rates demonstrates distinct genetic mechanisms that influence lifespan, Exp. Gerontol., 2008, vol. 43, pp. 1044–1051.  https://doi.org/10.1016/j.exger.2008.09.006 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Yurova
    • 1
    Email author
  • M. L. Tyndyk
    • 1
  • I. G. Popovich
    • 1
  • A. G. Golubev
    • 1
  • V. N. Anisimov
    • 1
  1. 1.Petrov National Medical Research Center of OncologySt. PetersburgRussia

Personalised recommendations