Advances in Gerontology

, Volume 9, Issue 3, pp 283–288 | Cite as

Changes in the Activity of Glutathione Peroxidase in the Blood Plasma and Serum of Rats during Postnatal Development and Aging

  • A. V. RazygraevEmail author
  • M. A. Petrosyan
  • Zh. N. Tumasova
  • K. I. Taborskaya
  • L. S. Polyanskikh
  • E. V. Baziian
  • N. N. Balashova


The activity of glutathione peroxidase (GPx) in plasma and serum of Wistar rats during postnatal ontogeny and aging is studied. A combination of various substrates is used for assessment of the enzymatic activity. During the period of milk nutrition, since the beginning of the consumption of solid food, GPx activity is rapidly increasing and almost reaches the adult level by 1.5 months. Enzyme activity remains stable in adulthood and has long been high in aging rats. A decrease in GPx activity around 23–26 months of age is revealed, with reduced homocysteine (but not with reduced glutathione) as a GPx substrate. The dramatic increase of GPx activity in plasma from 0.5 to 1–1.5 months of age may be an adaptation to consumption of solid food that may contain substances inducing oxidative stress. Probably, with sufficient selenium consumption, a decrease in GPx activity in rat plasma occurs only in extreme old age and can be considered as an indicator of physiological aging.


glutathione peroxidase postnatal ontogeny aging homocysteine hydrogen peroxide tert-butyl hydroperoxide Ellman’s reagent 



The authors thank prof. A.V. Arutunyan (Ott Research Institute of Obstetrics, Gynecology and Reproductology) for useful discussions on the GPx3 substrate specificity and M.O. Matrosova (Peter the Great St. Petersburg Polytechnic University) and N.A. Pechnikova (St. Petersburg State Chemical Pharmaceutical University) for the help with animal care.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Anisimov, V.N. and Solov’ev, M.V., Evolyutsiya kontseptsii v gerontologii (Evolution of the Concepts in Gerontology), St. Petersburg: Eskulap, 1999.Google Scholar
  2. 2.
    Zil’fyan, V.N. and Kumkumadzhyan, V.A., A new method of taking blood from small laboratory animals, Zh. Eksp. Klin. Med., 1970, vol. 10, no. 4, pp. 12–14.Google Scholar
  3. 3.
    Razygraev, A.V., Determination of thiol peroxidase activity in rat blood serum using tert-butyl hydroperoxide and homocysteine, Butlerovskie Soobshch., 2016, vol. 47, no. 9, pp. 156–162.Google Scholar
  4. 4.
    Razygraev, A.V., Pats, K.M., Pitukhina, N.N., et al., Determination of glutathione peroxidase activity in serum of laboratory mice using hydrogen peroxide and Ellman’s reagent, Butlerovskie Soobshch., 2016, vol. 45, no. 2, pp. 123–130.Google Scholar
  5. 5.
    Razygraev, A.V., Taborskaya, K.I., Petrosyan, M.A., and Tumasova, Zh.N., Thiol peroxidase activity of rat blood plasma determined using hydrogen peroxide and 5,5'-dithiobis (2-nitrobenzoic acid), Biomed. Khim., 2016, vol. 62, no. 4, pp. 431–438.CrossRefGoogle Scholar
  6. 6.
    Razygraev, A.V., Yushina, A.D., and Titovich, I.A., Correction to: A Method of Measuring Glutathione Peroxidase Activity in Murine Brain: Application in Pharmacological Experiment, Bull. Exp. Biol. Med., 2018, vol. 165, no. 4, pp. 589–592.CrossRefGoogle Scholar
  7. 7.
    Khavinson, V.Kh., Barinov, V.A., Arutyunyan, A.V., and Malinin, V.V., Svobodnoradikal’noe okislenie i starenie (Free Radical Oxidation and Aging), St. Petersburg: Nauka, 2003.Google Scholar
  8. 8.
    Brigelius-Flohé, R. and Maiorino, M., Glutathione peroxidases, Biochim. Biophys. Acta, Gen. Subj., 2013, vol. 1830, no. 5, pp. 3289–3303.Google Scholar
  9. 9.
    Buijsse, B., Lee, D. H., Steffen, L., et al., Low serum glutathione peroxidase activity is associated with increased cardiovascular mortality in individuals with low HDLc’s, PLoS One, 2012, vol. 7, no. 6, p. e38901.CrossRefGoogle Scholar
  10. 10.
    Ellman, G.L., Tissue sulfhydryl groups, Arch. Biochem. Biophys., 1959, vol. 82, no. 1, pp. 70–77.CrossRefGoogle Scholar
  11. 11.
    Flohé, L., Toppo, S., Cozza, G., and Ursini, F., A comparison of thiol peroxidase mechanisms, Antioxid. Redox Signaling, 2011, vol. 15, no. 3, pp. 763–780.Google Scholar
  12. 12.
    Flohé, L. and Brigelius-Flohé, R., Selenoproteins of the glutathione peroxidase family, in Selenium: Its Molecular Biology and Role in Human Health, Yatfield, D.L., et al., Eds., New York: Springer-Verlag, 2012.Google Scholar
  13. 13.
    Liu, Y., Li, Y., Jiang, Y., et al., Effects of soil trace elements on longevity population in China, Biol. Trace Elem. Res., 2013, vol. 153, nos. 1–3, pp. 119–126.Google Scholar
  14. 14.
    Olson, G.E., Whitin, J.C., Hill, K.E., et al., Extracellular glutathione peroxidase (GPx3) binds specifically to basement membranes of mouse renal cortex tubule cells, Am. J. Physiol.-Renal Physiol., 2010, vol. 298, no. 5, pp. F1244–F1253.CrossRefGoogle Scholar
  15. 15.
    Pastori, D., Pignatelli, P., Farcomeni, A., et al., Aging-related decline of glutathione peroxidase 3 and risk of cardiovascular events in patients with atrial fibrillation, J. Am. Heart Assoc., 2016, vol. 5, no. 9, p. e003682.CrossRefGoogle Scholar
  16. 16.
    R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2017.Google Scholar
  17. 17.
    Riddles, P.W., Blakeley, R.L., and Zerner, B., Ellman’s reagent: 5,5'-dithiobis (2-nitrobenzoic acid)—a re-examination, Anal. Biochem., 1979, vol. 94, no. 1, pp. 75–81.CrossRefGoogle Scholar
  18. 18.
    Sengupta, P., The laboratory rat: relating its age with human’s, Int. J. Prevent. Med., 2013, vol. 4, no. 6, pp. 624–630.Google Scholar
  19. 19.
    Singh, K., Kaur, S., Kumari, K., et al., Alterations in lipid peroxidation and certain antioxidant enzymes in different age groups under physiological conditions, J. Hum. Ecol., 2009, vol. 27, no. 2, pp. 143–147.CrossRefGoogle Scholar
  20. 20.
    Takebe, G., Yarimuzu, J., Saito, Y., et al., A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P, J. Biol. Chem., 2002, vol. 277, no. 43, pp. 41 254–41 258.CrossRefGoogle Scholar
  21. 21.
    Tian, L., Cai, Q., and Wei, H., Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging, Free Radical Biol. Med., 1998, vol. 24, no. 9, pp. 1477–1484.CrossRefGoogle Scholar
  22. 22.
    Torres, W.H., Biología de las especies de oxígeno reactivas, Mensaje Bioquimico, 2002, vol. 26, pp. 19–54.Google Scholar
  23. 23.
    Tsuji, P.A., Davis, C.D., and Milner, J.A., Selenium: dietary sources and human requirements, Selenium: Its Molecular Biology and Role in Human Health, Yatfield, D.L. et al., Eds., New York: Springer-Verlag, 2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Razygraev
    • 1
    • 2
    Email author
  • M. A. Petrosyan
    • 2
  • Zh. N. Tumasova
    • 2
  • K. I. Taborskaya
    • 3
  • L. S. Polyanskikh
    • 2
  • E. V. Baziian
    • 2
  • N. N. Balashova
    • 2
  1. 1.Saint Petersburg State Chemical Pharmaceutical UniversitySt. PetersburgRussia
  2. 2.Ott Research Institute of Obstetrics, Gynecology, and ReproductologySt. PetersburgRussia
  3. 3.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations