Advertisement

Advances in Gerontology

, Volume 9, Issue 3, pp 274–282 | Cite as

Age-Related Changes in the Functional Indices of Cardiac Mitochondria in Chronic Alcohol Intoxication in Rats

  • T. A. Popova
  • I. I. Prokofiev
  • G. Kh. Khusainova
  • V. N. PerfilovaEmail author
  • M. V. Kustova
  • I. N. Tyurenkov
  • V. V. Bagmetova
  • O. V. Ostrovsky
  • G. P. Dudchenko
Article
  • 3 Downloads

Abstract

The effect of chronic continuous consumption of 5 and 10% ethanol solutions for six months on the respiratory function and oxidant/antioxidant status in the cardiac mitochondria of rats of different gender and age is studied. A decrease in the rate of oxygen consumption by cardiomyocyte mitochondria under the V2, V3, and V4 metabolic conditions according to Chance during the activation of the respiratory chain complexes I, I + II, and II is observed in old animals (24-month-old) compared to young (11-month-old) rats. The level of the products of lipid peroxidation (LPO) (malondialdehyde) in the cardiomyocyte mitochondria increases, whereas the activity of the antioxidant enzymes (superoxide dismutase and glutathione peroxidase) decreases. Chronic alcoholization of 24-month-old rats of both genders results in a more pronounced decline in the activity of respiratory function of the cardiac mitochondria, disintegration of respiration and oxidative phosphorylation, reduced activity of antiradical protection enzymes, and an increase in the level of LPO products compared to younger rats.

Keywords:

mitochondrial respiration lipid peroxidation intensity age chronic alcohol intoxication 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest.

The animal care procedure corresponded to the Order of the Ministry of Health of the Russian Federation, April 1, 2016, no. 199n “On the Approval of the Rules of Good Laboratory Practice” and the international recommendations of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (The European Convention, 1986).

The study was performed in accordance with the rules indicated in the order and the requirements of the Directive 2010/63/EU of the European Parliament and of the Council of September 22, 2010 on the protection of animals used for scientific purposes. The protocol of the experiment was approved by the independent regional Ethics Committee (Volgograd Medical Research Center, project no. 2034–2017 from September 15, 2017).

REFERENCES

  1. 1.
    Popova, T.N., Allekrad, Kh., Matasova, L.V., Safonova, O.A., and Semenikhina, A.V., The effect of melatonin on free radical homeostasis in chronic alcohol intoxication in rats, Vopr. Biol., Med. Farm. Khim., 2012, no. 2, pp. 44–47.Google Scholar
  2. 2.
    Babenko, N.A. and Storozhenko, G.V., Correction of age-related disorders in the content of cardiolipin in rat tissues by suppression of the activity of neutral sphingomyelinase, Probl. Stareniya Dolgoletiya, 2015, vol. 24, nos. 3–4, pp. 257–265.Google Scholar
  3. 3.
    Korolyuk, M.A., Ivanova, L.I., and Maiorova, I.G., Determination of catalase activity, Lab. Delo, 1988, no. 1, pp. 16–19.Google Scholar
  4. 4.
    Kostyuk, V.A., Potapovich, A.I., and Kovaleva, Zh.V., Facilitated and sensitive method for the determination of superoxide dismutase activity based on the reaction of quercetin oxidation, Vopr. Med. Khim., 1990, no. 2, pp. 88–91.Google Scholar
  5. 5.
    Lelevich, A.V. and Lelevich, S.V., Narusheniya metabolizma pri vvedenii etanola v orgnaizm (Metabolism Disorder after Intake of Ethanol in Organism), Grodno, 2017.Google Scholar
  6. 6.
    Moin, V.M., Facilitated and specific method for the determination of glutathione peroxidase in erythrocytes, Lab. Delo, 1986, no. 12, pp. 12–16.Google Scholar
  7. 7.
    Stal’naya, I.D. and Garishvili, T.G., Determination of malonic dialdehyde using thiobarbituric acid, in Sovremennye metody v biokhimii (Modern Methods in Biochemistry), Moscow: Meditsina, 1977, pp. 66–68.Google Scholar
  8. 8.
    Ushkalova, V.N., Ioanidis, N.V., Kadochnikova, G.D., and Deeva, Z.M., Kontrol’ perekisnogo okisleniya lipidov (Control of Lipid Peroxidation), Novosibirsk, 1993.Google Scholar
  9. 9.
    Boengler, K., Kosiol, M., Mayr, M., et al., Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue, J. Cachexia, Sarcopenia Muscle, 2017, vol. 8, no. 3, pp. 349–369.CrossRefGoogle Scholar
  10. 10.
    Brand, M.D. and Nicholls, D.G., Assessing mitochondrial dysfunction in cells, Biochem. J., 2011, vol. 435, no. 2, pp. 297–312.CrossRefGoogle Scholar
  11. 11.
    Marques, G.L., Neto, F.F., Ribeiro, C.A., et al., Oxidative damage in the aging heart: an experimental rat model, Open Cardiovasc. Med. J., 2015, vol. 9, pp. 78–82.CrossRefGoogle Scholar
  12. 12.
    Giergiel, M. and Kankofer, M., Age and sex-related changes in superoxide dismutase activity in bovine tissues, Czech. J. Anim. Sci., 2015, vol. 60, no. 8, pp. 367–374.CrossRefGoogle Scholar
  13. 13.
    Jeevanandam, M., Young, D.H., Ramias, L., and Schiller, W.R., Effect of major trauma on plasma free amino acid concentrations in geriatric patients, Am. J. Clin. Nutr., 1990, vol. 51, no. 6, pp. 1040–1045.CrossRefGoogle Scholar
  14. 14.
    Jing, L., Zhou, L.J., Li, W.M., et al., Carnitine regulates myocardial metabolism by Peroxisome Proliferator-Activated Receptor-α (PPARα) in alcoholic cardiomyopathy, Med. Sci. Monit., 2011, vol. 17, no. 1, pp. 1–9.CrossRefGoogle Scholar
  15. 15.
    Jong, C.J., Azuma, J., and Schaffer, S., Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production, Amino Acids, 2012, vol. 42, no. 6, pp. 2223–2232.CrossRefGoogle Scholar
  16. 16.
    Lanza, I.R., Functional assessment of isolated mitochondria in vitro, Methods Enzymol., 2009, vol. 475, pp. 349–372.CrossRefGoogle Scholar
  17. 17.
    Laurent, D., Mathew, J.E., Mitry, M., et al., Chronic ethanol consumption increases myocardial mitochondrial DNA mutations: a potential contribution by mitochondrial topoisomerases, Alcohol Alcohol, 2014, vol. 49, no. 4, pp. 381–389.CrossRefGoogle Scholar
  18. 18.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, p. 265.Google Scholar
  19. 19.
    Manzo-Avalos, S. and Saavedra-Molina, A., Cellular and mitochondrial effects of alcohol consumption, Int. J. Environ. Res. Publ. Health, 2010, vol. 7, no. 12, pp. 4281–4304.CrossRefGoogle Scholar
  20. 20.
    Matyas, C., Varga, Z.V., Mukhopadhyay, P., et al., Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis, Am. J. Physiol. Heart Circ. Physiol., 2016, vol. 310, no. 11, pp. 1658–1670.CrossRefGoogle Scholar
  21. 21.
    Mukherjee, S., Alcohol metabolism and generation of free radicals: a deep insight, OA Alcohol, 2014, vol. 2, no. 1, p. 10.Google Scholar
  22. 22.
    Owada, T., Yamauchi, H., Saitoh, S., et al., Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance, Coron. Artery Dis., 2017, vol. 28, no. 1, pp. 33–43.CrossRefGoogle Scholar
  23. 23.
    Piano, M.R. and Phillips, S.A., Alcoholic cardiomyopathy: pathophysiologic insights, Cardiovasc. Toxicol., 2014, vol. 14, no. 4, pp. 291–308.CrossRefGoogle Scholar
  24. 24.
    Rehm, J. and Imtiaz, S., A narrative review of alcohol consumption as a risk factor for global burden of disease, Subst. Abuse Treat., Prev., Policy, 2016, vol. 11, no. 1, p. 37.CrossRefGoogle Scholar
  25. 25.
    Steiner, J.L. and Lang, C.H., Etiology of alcoholic cardiomyopathy: mitochondria, oxidative stress, and apoptosis, Int. J. Biochem. Cell Biol., 2017, vol. 89, pp. 125–135.CrossRefGoogle Scholar
  26. 26.
    Welch, K.A., Alcohol consumption and brain health, Br. Med. J., 2017, vol. 357, p. j2645.  https://doi.org/10.1136/bmj.j2645 CrossRefGoogle Scholar
  27. 27.
    World Health Organization, Global Status Report on Alcohol and Health, Geneva: World Health Org., 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. A. Popova
    • 1
  • I. I. Prokofiev
    • 1
  • G. Kh. Khusainova
    • 1
  • V. N. Perfilova
    • 1
    Email author
  • M. V. Kustova
    • 1
  • I. N. Tyurenkov
    • 1
  • V. V. Bagmetova
    • 1
  • O. V. Ostrovsky
    • 1
  • G. P. Dudchenko
    • 1
  1. 1.Volgograd State Medical UniversityVolgogradRussia

Personalised recommendations