Advertisement

Advances in Gerontology

, Volume 9, Issue 3, pp 327–335 | Cite as

Dose-Dependent Mechanisms of Melatonin on the Functioning of the Cardiovascular System and on the Behavior of Normotensive Rats of Different Ages

  • M. G. Pliss
  • N. V. KuzmenkoEmail author
  • N. S. Rubanova
  • V. A. Tsyrlin
Article
  • 5 Downloads

Abstract

The purpose of the work on normotensive rats of different age groups (3, 15, and 22 months) is to study the synchronism between the functioning of the cardiovascular system and the locomotor activity of animals in open field tests by a single injection of exogenous melatonin in different doses (1 and 10 mg/kg). The studies show a unidirectional dose-dependent effect of exogenous melatonin on the locomotor activity of rats of different ages and an age-dependent effect of melatonin on the parameters of the cardiovascular system. The results show the possible desynchronization between the circadian rhythms of locomotor activity and the functioning of the cardiovascular system with aging, which can lead to a discrepancy between hemodynamic parameters and the level of locomotor activity.

Keywords:

melatonin circadian rhythm cardiovascular system heart rate variability open field test 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors delate that they have no conflict of interest.

Statement on the welfare of animals. The conditions of the research were in accordance with the ethical standards of the Almazov National Medical Research Centre (St. Petersburg), European Communities Council Directive 1986 (86/609/ EEC), and the rules stated in the Guide for the Care and Use of Laboratory Animals.

This study does not contain any studies involving human participants performed by any of the authors.

REFERENCES

  1. 1.
    Anisimov, V.N., Epiphysis, biorhythms, and aging of an organism, Usp. Fiziol. Nauk, 2008, vol. 39, no. 4, pp. 40–65.Google Scholar
  2. 2.
    Arushanyan, E.B. and Popov, A.V., Modern concepts on the role of the suprachiasmatic nuclei of the hypothalamus in the organization of diurnal periodism of physiological functions, Usp. Fiziol. Nauk, 2011, vol. 42, no. 4, pp. 39–58.Google Scholar
  3. 3.
    Beier, E.V. and Skornyakov, A.A., Comparative assessment of psychotropic activity of melatonin on various behavioral models, Trudy X Mezhdunarodnogo kongressa “Zdorov’e i obrazovanie XXI veka” (Proc. X Int. Congr. “Health and Education in 21st Century”), Moscow, 2011, vol. 13, no. 7, p. 319.Google Scholar
  4. 4.
    Beier, E.V., Skornyakov, A.A., and Arushanyan, E.B., Effect of pineal gland removal on the psychotropic activity of adaptogenic agents in rats, Med. Vestn. Sev. Kavk., 2014, vol. 9, no. 3, pp. 254–258.Google Scholar
  5. 5.
    Kim, L.B., Putyatina, A.N., Russkikh, G.S., and Tsypysheva, O.B., Melatonin and the aging process in men in the European part of the Arctic zone of Russia, Adv. Gerontol., 2019, vol. 9, no. 1, pp. 67–74.CrossRefGoogle Scholar
  6. 6.
    Kurbatova, I.V., Topchieva, L.V., and Nemov, N.N., Circadian genes and cardiovascular pathologies, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2014, no. 5, pp. 3–17.Google Scholar
  7. 7.
    American Heart Association, Heart rate variability: standards of measurement, physiological interpretation, and clinical use, Circulation, 1996, vol. 93, no. 5, pp. 1043–1065.Google Scholar
  8. 8.
    Acuña-Castroviejo, D., Escames, G., Venegas, C., et al., Extra pineal melatonin: sources, regulation, and potential functions, Cell Mol. Life Sci., 2014, vol. 71, no. 16, pp. 2997–3025.Google Scholar
  9. 9.
    Adamsson, M., Laike, T., and Morita, T., Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length, J. Physiol. Anthropol., 2016, vol. 36, no. 1, p. 6.  https://doi.org/10.1186/s40101-016-0103-9 CrossRefGoogle Scholar
  10. 10.
    Arendt, J., Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology, Rev. Reprod., 1998, vol. 3, pp. 13–22.CrossRefGoogle Scholar
  11. 11.
    Atkinson, G., Witte, K., Nold, G., et al., Effects of age on circadian blood pressure and heart rate rhythms in patients with primary hypertension, Chronobiol. Int., 1994, vol. 11, no. 1, pp. 35–44.CrossRefGoogle Scholar
  12. 12.
    Benloucif, S., Masana, M.I., and Dubocovich, M.L., Responsiveness to melatonin and its receptor expression in the aging circadian clock of mice, Am. J. Physiol., 1997, vol. 273, no. 6, pp. R1855– R1860.Google Scholar
  13. 13.
    Bilan, A., Witczak, A., Palusiński, R., et al., Circadian rhythm of spectral indices of heart rate variability in healthy subjects, J. Electrocardiol., 2005, vol. 38, no. 3, pp. 239–243.CrossRefGoogle Scholar
  14. 14.
    Campos Costa, I., Nogueira Carvalho, H., and Fernandes, L., Aging, circadian rhythms and depressive disorders: a review, Am. J. Neurodegener. Dis., 2013, vol. 2, no. 4, pp. 228–246.Google Scholar
  15. 15.
    Cheung, R.T., Tipoe, G.L., Tam, S., et al., Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration, J. Pineal Res., 2006, vol. 41, no. 4, pp. 337–343.CrossRefGoogle Scholar
  16. 16.
    Chuang, J.I. and Lin, M.T., Pharmacological effects of melatonin treatment on both locomotor activity and brain serotonin release in rats, J. Pineal Res., 1994, vol. 17, no. 1, pp. 11–16.CrossRefGoogle Scholar
  17. 17.
    Douma, L.G. and Gumz, M.L., Circadian clock-mediated regulation of blood pressure, Free Radical Biol. Med., 2018, vol. 119, pp. 108–114.CrossRefGoogle Scholar
  18. 18.
    Dubocovich, M.L., Melatonin receptors: Are there multiple subtypes?, Trends Pharmacol. Sci., 1995, vol. 16, pp. 50–56.CrossRefGoogle Scholar
  19. 19.
    Emet, M., Ozcan, H., Ozel, L., et al., A review of melatonin, its receptors and drugs, Eurasian J. Med., 2016, vol. 48, no. 2, pp. 135–141.CrossRefGoogle Scholar
  20. 20.
    Evans, B.K., Mason, R., and Wilson, V.G., Evidence for direct vasoconstrictor activity of melatonin in “pressurized” segments of isolated caudal artery from juvenile rats, Naunyn-Schmiedeberg’s Arch. Pharmacol., 1992, vol. 346, no. 3, pp. 362–365.CrossRefGoogle Scholar
  21. 21.
    Franchini, K., Moreira, E.D., Ida, F., and Krieger, E.M., Alterations in the cardiovascular control by the chemoreflex and the baroreflex in old rats, Am. J. Physiol.-Regul., Integr. Comp. Physiol., 1996, vol. 270, pp. R310–R313.CrossRefGoogle Scholar
  22. 22.
    Gupta, A.K., Cornelissen, G., Greenway, F.L., et al., Abnormalities in circadian blood pressure variability and endothelial function: pragmatic markers for adverse cardiometabolic profiles in asymptomatic obeseadults, Cardiovasc. Diabetol., 2010, vol. 9, p. 58.  https://doi.org/10.1186/1475-2840-9-58 CrossRefGoogle Scholar
  23. 23.
    Grossman, E., Laudon, M., and Zisapel, N., Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials, Vasc. Health Risk Manage., 2011, vol. 7, pp. 577–584.Google Scholar
  24. 24.
    Hall, C.S., Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity, J. Comp. Physiol. Psychol., 1936, vol. 22, pp. 345–352.CrossRefGoogle Scholar
  25. 25.
    Hashimoto, M., Kuwahara, M., Tsubone, H., and Sugano, S., Diurnal variation of autonomic nervous activity in the rat: investigation by power spectral analysis of heart rate variability, J. Electrocardiol., 1999, vol. 32, no. 2, pp. 167–171.CrossRefGoogle Scholar
  26. 26.
    Huang, L., Zhang, C., Hou, Y., et al., Blood pressure reducing effects of piromelatine and melatonin in spontaneously hypertensive rats, Eur. Rev. Med. Pharmacol. Sci., 2013, vol. 17, no. 18, pp. 2449–2456.Google Scholar
  27. 27.
    Hutchinson, A.J., Hudson, R.L., and Dubocovich, M.L., Genetic deletion of MT(1) and MT(2) melatonin receptors differentially abrogates the development and expression of methamphetamine-induced locomotor sensitization during the day and the night in C3H/HeN mice, J. Pineal Res., 2012, vol. 53, no. 4, pp. 399–409.CrossRefGoogle Scholar
  28. 28.
    Jenwitheesuk, A., Boontem, P., Wongchitrat, P., et al., Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway, EXCLI J., 2017, vol. 16, pp. 340–353.Google Scholar
  29. 29.
    Jiki, Z., Lecour, S., and Nduhirabandi, F., Cardiovascular benefits of dietary melatonin: a myth or a reality?, Front. Physiol., 2018, vol. 17, no. 9, p. 528.  https://doi.org/10.3389/fphys.2018.00528 CrossRefGoogle Scholar
  30. 30.
    Korpelainen, J.T., Sotaniemi, K.A., Huikuri, H.V., and Myllylä, V.V., Circadian rhythm of heart rate variability is reversibly abolished in ischemic stroke, Stroke, 1997, vol. 28, no. 11, pp. 2150–2154.CrossRefGoogle Scholar
  31. 31.
    Laudon, M., Nir, I., and Zisapel, N., Melatonin receptors in discrete brain areas of the male rat. Impact of aging on density and on circadian rhythmicity, Neuroendocrinology, 1988, vol. 48, no. 6, pp. 577–583.CrossRefGoogle Scholar
  32. 32.
    Lew, M.J. and Flanders, S., Mechanisms of melatonin-induced vasoconstriction in the rat tail artery: a paradigm of weak vasoconstriction, Br. J. Pharmacol., 1999, vol. 126, no. 6, pp. 1408–1418.CrossRefGoogle Scholar
  33. 33.
    Lindesay, G., Ragonnet, C., Chimenti, S., et al., Age and hypertension strongly induce aortic stiffening in rats at basal and matched blood pressure levels, Physiol. Rep., 2016, vol. 4, no. 10, p. e12805.  https://doi.org/10.14814/phy2.12805 CrossRefGoogle Scholar
  34. 34.
    Liu, J., Clough, S.J., Hutchinson, A.J., et al., Mt1 and Mt2 melatonin receptors: a therapeutic perspective, Ann. Rev. Pharmacol. Toxicol., 2016, vol. 56, pp. 361–383.CrossRefGoogle Scholar
  35. 35.
    Lusardi, P., Piazza, E., and Fogari, R., Cardiovascular effects of melatonin in hypertensive patients well controlled by nifedipine: a 24-hour study, Br. J. Clin. Pharmacol., 2000, vol. 49, pp. 423–427.CrossRefGoogle Scholar
  36. 36.
    Mattam, U. and Jagota, A., Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats, Biogerontology, 2014, vol. 15, no. 3, pp. 257–268.CrossRefGoogle Scholar
  37. 37.
    Ng, K.Y., Leong, M.K., Liang, H., and Paxinos, G., Melatonin receptors: distribution in mammalian brain and their respective putative functions, Brain Struct. Funct., 2017, vol. 222, no. 7, pp. 2921–2939.CrossRefGoogle Scholar
  38. 38.
    Nishiyama, K., Yasue, H., Moriyama, Y., et al., Acute effects of melatonin administration on cardiovascular autonomic regulation in healthy men, Am. Heart J., 2001, vol. 141, no. 5, p. E9.  https://doi.org/10.1067/mhj.2001.114368 CrossRefGoogle Scholar
  39. 39.
    Pechanova, O., Zicha, J., Paulis, L., et al., The effect of N-acetyl cysteine and melatonin in adult spontaneously hypertensive rats with established hypertension, Eur. J. Pharmacol., 2007, vol. 561, nos. 1–3, pp. 129–136.Google Scholar
  40. 40.
    Pechanova, O., Paulis, L., and Simko, F., Peripheral and central effects of melatonin on blood pressure regulation, Int. J. Mol. Sci., 2014, vol. 15, no. 10, pp. 17920–17937.CrossRefGoogle Scholar
  41. 41.
    Pfeffer, M., Korf, H.W., and Wicht, H., The role of the melatoninergic system in light-entrained behavior of mice, Int. J. Mol. Sci., 2017, vol. 18, no. 3, p. E530.CrossRefGoogle Scholar
  42. 42.
    Rajendra, A.U., Paul, J.K., Kannathal, N., et al., Heart rate variability: a review, Med. Bio Eng. Comput., 2006, vol. 44, no. 12, pp. 1031–1051.CrossRefGoogle Scholar
  43. 43.
    Romerowicz-Misielak, M., Oren, D.A., Sowa-Kucma, M., et al., Changes in melatonin synthesis parameters after carbon monoxide concentration increase in the cavernous sinus, J. Physiol. Pharmacol., 2015, vol. 66, no. 4, pp. 505–514.Google Scholar
  44. 44.
    Rosenthal, T., Seasonal variations in blood pressure, Am. J. Geriatr. Cardiol., 2004, vol. 13, no. 5, pp. 267–272.CrossRefGoogle Scholar
  45. 45.
    Rossi, S., Fortunati, I., Carnevali, L., et al., The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6month period, PLoS One, 2014, vol. 9, no. 11, p. e112697.  https://doi.org/10.1371/journal.pone.0112697 CrossRefGoogle Scholar
  46. 46.
    Sánchez-Hidalgo, M., Guerrero Montavez, J.M., Carrascosa-Salmoral Mdel, P., et al., Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging, J. Pineal Res., 2009, vol. 46, no. 1, pp. 29–35.Google Scholar
  47. 47.
    Sei, H., Sano, A., Ohno, H., et al., Age-related changes in control of blood pressure and heart rate during sleep in the rat, Sleep, 2002, vol. 25, no. 3, pp. 279–285.CrossRefGoogle Scholar
  48. 48.
    Vandeputte, C., Giummelly, P., Atkinson, J., et al., Melatonin potentiates NE-induced vasoconstriction without augmenting cytosolic calcium concentration, Am. J. Physiol. Heart Circ. Physiol., 2001, vol. 280, no. 1, pp. H420–H425.CrossRefGoogle Scholar
  49. 49.
    Waki, H., Katahira, K., Polson, J.W., et al., Automation of analysis of cardiovascular autonomic function from chronic measurements of arterial pressure in conscious rats, Exp. Physiol., 2006, vol. 91, no. 1, pp. 201–213.CrossRefGoogle Scholar
  50. 50.
    Watanabe, Y., Toyoshima, T., Otsuka, K., et al., Circadian profiles of blood pressure with respect to age, Nihon Ronen Igakkai Zasshi, 1994, vol. 31, no. 3, pp. 219–225.CrossRefGoogle Scholar
  51. 51.
    Weekley, L.B., Melatonin-induced relaxation of rat aorta: interaction with adrenergic agonists, J. Pineal Res., 1991, vol. 11, no. 1, pp. 28–34.CrossRefGoogle Scholar
  52. 52.
    Wu, Y.H. and Swaab, D.F., The human pineal gland and melatonin in aging and Alzheimer’s disease, Pineal Res., 2005, vol. 38, no. 3, pp. 145–152.CrossRefGoogle Scholar
  53. 53.
    Yeleswaram, K., McLaughlin, L.G., Knipe, J.O., and Schabdach, D., Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications, J. Pineal Res., 1997, vol. 22, no. 1, pp. 45–51.CrossRefGoogle Scholar
  54. 54.
    Zaretsky, D.V., Zaretskaia, M.V., and DiMicco, J.A., Characterization of the relationship between spontaneous locomotor activity and cardiovascular parameters in conscious freely moving rats, Physiol. Behav., 2016, vol. 154, pp. 60–67.CrossRefGoogle Scholar
  55. 55.
    Zhao, T., Zhang, H., Jin, C., et al., Melatonin mediates vasodilatation through both direct and indirect activation of BKC channels, J. Mol. Endocrinol., 2017, vol. 59, no. 3, pp. 219–233.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. G. Pliss
    • 1
    • 2
  • N. V. Kuzmenko
    • 1
    • 2
    Email author
  • N. S. Rubanova
    • 2
  • V. A. Tsyrlin
    • 1
  1. 1.Almazov National Medical Research CentreSt. PetersburgRussia
  2. 2.Pavlov First State Medical UniversitySt. PetersburgRussia

Personalised recommendations